Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomed Opt ; 29(8): 086005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165857

RESUMEN

Significance: Pathologies within the tympanic membrane (TM) and middle ear (ME) can lead to hearing loss. Imaging tools available in the hearing clinic for diagnosis and management are limited to visual inspection using the classic otoscope. The otoscopic view is limited to the surface of the TM, especially in diseased ears where the TM is opaque. An integrated optical coherence tomography (OCT) otoscope can provide images of the interior of the TM and ME space as well as an otoscope image. This enables the clinicians to correlate the standard otoscopic view with OCT and then use the new information to improve the diagnostic accuracy and management. Aim: We aim to develop an OCT otoscope that can easily be used in the hearing clinic and demonstrate the system in the hearing clinic, identifying relevant image features of various pathologies not apparent in the standard otoscopic view. Approach: We developed a portable OCT otoscope device featuring an improved field of view and form-factor that can be operated solely by the clinician using an integrated foot pedal to control image acquisition. The device was used to image patients at a hearing clinic. Results: The field of view of the imaging system was improved to a 7.4 mm diameter, with lateral and axial resolutions of 38 µ m and 33.4 µ m , respectively. We developed algorithms to resample the images in Cartesian coordinates after collection in spherical polar coordinates and correct the image aberration. We imaged over 100 patients in the hearing clinic at USC Keck Hospital. Here, we identify some of the pathological features evident in the OCT images and highlight cases in which the OCT image provided clinically relevant information that was not available from traditional otoscopic imaging. Conclusions: The developed OCT otoscope can readily fit into the hearing clinic workflow and provide new relevant information for diagnosing and managing TM and ME disease.


Asunto(s)
Oído Medio , Diseño de Equipo , Otoscopios , Tomografía de Coherencia Óptica , Membrana Timpánica , Tomografía de Coherencia Óptica/métodos , Tomografía de Coherencia Óptica/instrumentación , Humanos , Membrana Timpánica/diagnóstico por imagen , Membrana Timpánica/patología , Oído Medio/diagnóstico por imagen , Oído Medio/patología , Enfermedades del Oído/diagnóstico por imagen , Otoscopía/métodos
2.
Otol Neurotol ; 45(7): 745-753, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896784

RESUMEN

OBJECTIVES: Excessive noise levels in music venues can negatively impact long-term hearing health. We investigated the prevalence, characteristics, and factors associated with hearing protection use among music event attendees. STUDY DESIGN: Cross-sectional cohort. METHODS: Adult participants (2,352) from online music forums completed a questionnaire assessing attendance at music events, hearing protection (HP) usage, type, and frequency, along with history of hearing-related symptoms and medical history. Primary outcome was defined as HP use at music venues. Data were characterized using descriptive statistics, paired t tests, and Pearson's chi-squared tests. Multivariable regression analysis elicited factors associated with any and regular HP use. RESULTS: Our 2,352 respondents were primarily male (61.3%) and on average 28.7 years old (SD = 7.0). Of the respondents, 60.6% reported using HP, and 33.2% reported regular use; high-fidelity earplugs were the most used HP type (57.5%). HP use was associated with significantly fewer reports of negative hearing-related symptoms. In a multivariable regression model, factors associated with less likelihood of HP use included being female (vs male, OR = 0.74, CI = [0.55-0.98]), less concern about effects on hearing (OR = 0.53, CI = [0.45-0.61]), and pop music event attendance (vs EDM, OR = 0.40, CI = [0.22-0.72]). Increased attendance frequency in the past year was associated with higher likelihood of regular HP use (OR = 1.07, CI = [1.04-1.09]). Decreased attendance duration was associated with decreased likelihood (OR = 0.09, CI = [0.03-0.33]). CONCLUSION: HP use prevalence was high, while frequent use remained low. HP use was significantly associated with reduced hearing-related symptoms. Demographic factors, otologic symp-tomology, and attendance-related characteristics were associated with HP use. These findings may guide interventions to increase adoption at music venues. LEVEL OF EVIDENCE: 4.


Asunto(s)
Dispositivos de Protección de los Oídos , Pérdida Auditiva Provocada por Ruido , Música , Humanos , Masculino , Femenino , Adulto , Estudios Transversales , Dispositivos de Protección de los Oídos/estadística & datos numéricos , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/epidemiología , Encuestas y Cuestionarios , Adulto Joven , Persona de Mediana Edad
3.
Otolaryngol Head Neck Surg ; 170(3): 776-787, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37811692

RESUMEN

OBJECTIVE: Investigate the prevalence of hearing protection (HP) use and behavioral motivations and barriers among adults attending music venues. STUDY DESIGN: Cross-sectional online survey study. SETTING: Noise exposure levels at popular social music venues often exceed national guidelines. METHODS: Surveys were distributed on online music communities. Respondents (n = 2352) were asked about demographics, HP use at music venues, knowledge about noise exposure impact, and perceptions of HP use. Data were characterized through descriptive statistics. Multivariable regression analysis explored differences in knowledge and perception between HP users and nonusers. RESULTS: In this cohort (mean age 29 ± 7 years, 61% male), HP users were significantly more aware of the impact of music venues on hearing (P < .01), believed their hearing ability had decreased after attending music venues (P < 0.01), and believed HP could protect from hearing loss (P < .01) than non-HP users. HP nonusers most frequently cited never considering HP (14.45%) and apathy about it affecting music quality (12.71%). Common sources of HP information were recommended by a friend/peer. Multivariable regression analysis accounting for demographics, medical history, and attendance characteristics found belief that HP use at music venues could protect from hearing loss (ß = 0.64, 95% confidence interval [CI] = [0.49-0.78]) and HP use (ß = 1.73, 95% CI = [1.47-1.98]) were significantly associated with increased subjective enjoyment while wearing HP. CONCLUSION: HP users and nonusers have significantly different perceptions of HP use and its impact. Our findings have implications for understanding motivations and barriers related to HP use and developing strategies to promote HP use at music venues.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Música , Adulto , Humanos , Masculino , Adulto Joven , Femenino , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/epidemiología , Estudios Transversales , Pruebas Auditivas , Audición
4.
Nature ; 623(7988): 757-764, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968390

RESUMEN

Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment1-4-especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor5. Traits such as body size, dispersal ability and habitat affiliation are hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has rarely been possible to test these hypotheses or, more generally, to link the short-term and long-term ecological effects of weather-related disturbance8,9. Here we show how large herbivores and carnivores in Mozambique responded to Intense Tropical Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from individual decisions in the hours after landfall to changes in community composition nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving upslope and shifting their diets. Body size and habitat association independently predicted population-level impacts: five of the smallest and most lowland-affiliated herbivore species declined by an average of 28% in the 20 months after landfall, while four of the largest and most upland-affiliated species increased by an average of 26%. We attribute the sensitivity of small-bodied species to their limited mobility and physiological constraints, which restricted their ability to avoid the flood and endure subsequent reductions in the quantity and quality of food. Our results identify general traits that govern animal responses to severe weather, which may help to inform wildlife conservation in a volatile climate.


Asunto(s)
Tamaño Corporal , Tormentas Ciclónicas , Mamíferos , Animales , Altitud , Biodiversidad , Carnivoría , Conservación de los Recursos Naturales , Dieta/veterinaria , Ecosistema , Clima Extremo , Inundaciones , Predicción , Herbivoria , Mamíferos/anatomía & histología , Mamíferos/fisiología , Mozambique
5.
Development ; 150(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37376888

RESUMEN

The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease. Previously, our group developed methods to produce prostate organoids using induced pluripotent stem cells (iPSCs). Here, we show that human iPSCs can be differentiated into prostate organoids using neonatal rat seminal vesicle mesenchyme in vitro. The organoids can be used to study prostate development or modified to study prostate cancer. We also elucidated molecular drivers of prostate induction through RNA-sequencing analyses of the rat urogenital sinus and neonatal seminal vesicles. We identified candidate drivers of prostate development evident in the inductive mesenchyme and epithelium involved with prostate specification. Our top candidates included Spx, Trib3, Snai1, Snai2, Nrg2 and Lrp4. This work lays the foundations for further interrogation of the reactivation of developmental genes in adulthood, leading to prostate disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Próstata , Masculino , Humanos , Ratas , Animales , Próstata , Roedores , Sistema Urogenital/fisiología , Diferenciación Celular/genética , Organoides
6.
Curr Biol ; 33(11): R584-R610, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279691

RESUMEN

Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.


Asunto(s)
Ecosistema , Herbivoria , Animales , Humanos , Herbivoria/fisiología , Biomasa , Biodiversidad , Plantas
7.
J Anim Ecol ; 92(3): 619-634, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527180

RESUMEN

Climate warming creates energetic challenges for endothermic species by increasing metabolic and hydric costs of thermoregulation. Although endotherms can invoke an array of behavioural and physiological strategies for maintaining homeostasis, the relative effectiveness of those strategies in a climate that is becoming both warmer and drier is not well understood. In accordance with the heat dissipation limit theory which suggests that allocation of energy to growth and reproduction by endotherms is constrained by the ability to dissipate heat, we expected that patterns of habitat use by large, heat-sensitive mammals across multiple scales are critical for behavioural thermoregulation during periods of potential heat stress and that they must invest a large portion of time to maintain heat balance. To test our predictions, we evaluated mechanisms underpinning the effectiveness of bed sites for ameliorating daytime heat loads and potential heat stress across the landscape while accounting for other factors known to affect behaviour. We integrated detailed data on microclimate and animal attributes of moose Alces alces, into a biophysical model to quantify costs of thermoregulation at fine and coarse spatial scales. During summer, moose spent an average of 67.8% of daylight hours bedded, and selected bed sites and home ranges that reduced risk of experiencing heat stress. For most of the day, shade could effectively mitigate the risk of experiencing heat stress up to 10°C, but at warmer temperatures (up to 20°C) wet soil was necessary to maintain homeostasis via conductive heat loss. Consistent selection across spatial scales for locations that reduced heat load underscores the importance of the thermal environment as a driver of behaviour in this heat-sensitive mammal. Moose in North America have long been characterized as riparian-obligate species because of their dependence on woody plant species for food. Nevertheless, the importance of dissipating endogenous heat loads conductively through wet soil suggests riparian habitats also are critical thermal refuges for moose. Such refuges may be especially important in the face of a warming climate in which both high environmental temperatures and drier conditions will likely exacerbate limits to heat dissipation, especially for large, heat-sensitive animals.


Asunto(s)
Ciervos , Ecosistema , Animales , Estaciones del Año , Temperatura , Ciervos/fisiología , Suelo , Cambio Climático
8.
Ecology ; 104(2): e3921, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36415899

RESUMEN

Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual-level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the "opportunity cost" of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high-quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS-collared animals (range 6-14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual-level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual-level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.


Asunto(s)
Ecosistema , Herbivoria , Animales , Dieta/veterinaria , Bosques , Alimentos
9.
Ann Otol Rhinol Laryngol ; 132(9): 996-1004, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36200783

RESUMEN

BACKGROUND: Complications during endoscopic sinus surgery often result from unfavorable anatomy. The prevalence rates of such anatomic findings vary tremendously in the literature, in part due to the small, homogenous populations previously studied. OBJECTIVE: To characterize the prevalence of sinonasal anatomic variants among ethnic groups and genders seen at an academic medical center. METHODS: This is a retrospective cross-sectional study of adult subjects who underwent CT imaging of the sinuses from January 2019 to November 2020 at a tertiary academic setting. CT scans were analyzed systematically by 3 trained study personnel for the presence of critical sinus anatomic variants that endoscopic sinus surgeons typically evaluate for preoperatively. Chi-squared tests and analyses of variance were conducted to detect differences in the prevalence of structural findings between genders and races/ethnicities. RESULTS: A total of 489 subjects (57% female) were included: 44 Asian, 14 Black/African American, 101 Hispanic/Latino, 203 White, 127 Other. The prevalence of the following anatomical variants differed by race/ethnicity: Haller cells, Type 3 optic nerve, Onodi cells, maxillary septations, sphenoid lateral recess, anterior clinoid process pneumatization, and carotid artery dehiscence. Asian subjects had higher rates of Haller cells (48% vs 16%, P < .001) and Type 3 optic nerve (18% vs 4%, P = .022) compared to Hispanic subjects, as well as a higher prevalence of Onodi cells (39% vs 17%, P = .003) compared to White subjects. Males had a higher prevalence of mesenteric anterior ethmoid arteries (62% vs 45%, P < .001) and dehiscent carotid arteries (30% vs 21%, P = .024). CONCLUSION: Certain sinonasal anatomic variants, which have direct implications for complications during endoscopic sinus surgery, were found to be significantly more prevalent in some demographic groups. Surgeons should be aware of these differences in their review of preoperative imaging for safe surgical planning.


Asunto(s)
Senos Paranasales , Adulto , Humanos , Masculino , Femenino , Estudios Retrospectivos , Estudios Transversales , Senos Paranasales/diagnóstico por imagen , Nervio Óptico/anatomía & histología , Base del Cráneo , Seno Esfenoidal/cirugía
10.
Algorithms ; 16(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39104565

RESUMEN

Optical Coherence Tomography (OCT) is a light-based imaging modality that is used widely in the diagnosis and management of eye disease, and it is starting to become used to evaluate for ear disease. However, manual image analysis to interpret the anatomical and pathological findings in the images it provides is complicated and time-consuming. To streamline data analysis and image processing, we applied a machine learning algorithm to identify and segment the key anatomical structure of interest for medical diagnostics, the tympanic membrane. Using 3D volumes of the human tympanic membrane, we used thresholding and contour finding to locate a series of objects. We then applied TensorFlow deep learning algorithms to identify the tympanic membrane within the objects using a convolutional neural network. Finally, we reconstructed the 3D volume to selectively display the tympanic membrane. The algorithm was able to correctly identify the tympanic membrane properly with an accuracy of ~98% while removing most of the artifacts within the images, caused by reflections and signal saturations. Thus, the algorithm significantly improved visualization of the tympanic membrane, which was our primary objective. Machine learning approaches, such as this one, will be critical to allowing OCT medical imaging to become a convenient and viable diagnostic tool within the field of otolaryngology.

11.
Proc Natl Acad Sci U S A ; 119(35): e2204400119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994662

RESUMEN

Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families-grasses and legumes-accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.


Asunto(s)
Dieta , Pradera , Herbivoria , Mamíferos , Plantas , África , Animales , Conducta Competitiva , Código de Barras del ADN Taxonómico , Dieta/estadística & datos numéricos , Dieta/veterinaria , Fabaceae/clasificación , Fabaceae/genética , Heces , Mamíferos/clasificación , Mamíferos/fisiología , Plantas/clasificación , Plantas/genética , Poaceae/clasificación , Poaceae/genética , Lluvia
12.
Science ; 374(6574): 1496-1500, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34914507

RESUMEN

Political, economic, and climatic upheaval can result in mass human migration across extreme terrain in search of more humane living conditions, exposing migrants to environments that challenge human tolerance. An empirical understanding of the biological stresses associated with these migrations will play a key role in the development of social, political, and medical strategies for alleviating adverse effects and risk of death. We model physiological stress associated with undocumented migration across a commonly traversed section of the southern border of the United States and find that locations of migrant death are disproportionately clustered within regions of greatest predicted physiological stress (evaporative water loss). Minimum values of estimated evaporative water loss were sufficient to cause severe dehydration and associated proximate causes of mortality. Integration of future climate predictions into models increased predicted physiological costs of migration by up to 34.1% over the next 30 years.


Asunto(s)
Clima Desértico , Migración Humana , Mortalidad , Estrés Fisiológico , Inmigrantes Indocumentados , Arizona , Niño , Cambio Climático , Deshidratación/epidemiología , Emigración e Inmigración , Femenino , Respuesta al Choque Térmico , Humanos , Masculino , México , Modelos Teóricos , Embarazo , Factores de Riesgo , Estaciones del Año
13.
Science ; 374(6566): 483-487, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34672738

RESUMEN

Understanding the evolutionary consequences of wildlife exploitation is increasingly important as harvesting becomes more efficient. We examined the impacts of ivory poaching during the Mozambican Civil War (1977 to 1992) on the evolution of African savanna elephants (Loxodonta africana) in Gorongosa National Park. Poaching resulted in strong selection that favored tusklessness amid a rapid population decline. Survey data revealed tusk-inheritance patterns consistent with an X chromosome­linked dominant, male-lethal trait. Whole-genome scans implicated two candidate genes with known roles in mammalian tooth development (AMELX and MEP1a), including the formation of enamel, dentin, cementum, and the periodontium. One of these loci (AMELX) is associated with an X-linked dominant, male-lethal syndrome in humans that diminishes the growth of maxillary lateral incisors (homologous to elephant tusks). This study provides evidence for rapid, poaching-mediated selection for the loss of a prominent anatomical trait in a keystone species.


Asunto(s)
Evolución Biológica , Crimen , Elefantes/anatomía & histología , Elefantes/genética , Amelogenina/genética , Animales , Femenino , Genes Ligados a X , Herencia , Masculino , Metaloendopeptidasas/genética , Selección Genética , Cromosoma X/genética
14.
Inorg Chem ; 59(5): 3102-3109, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32049500

RESUMEN

Organometallic uranium complexes that can activate small molecules are well-known. In contrast, there are no known organometallic trans-uranium species capable of small-molecule transformations. Using density functional theory, we previously showed that changing actinide-ligand bonds from U-O groups to Np-N- (amide/imido) bonds makes redox small-molecule activation more energetically favorable for Np species. Here, we determine how general this ligand-modulation strategy is for affecting small-molecule activation in Np species. We focus on two reactions, one involving redox transformation of the actinide(s) and the other involving no change in the oxidation state of the actinide(s). Specifically, we considered the hydrogen evolution reaction (HER) from H2O by actinide tris-aryloxide species. We also considered H2 capture and hydride transfer by actinide siloxide and silylamide complexes. For the HER, the barriers for Np(III) systems are much higher than those of U(III). The overall reaction energies are also much worse. An-O → An-N substitutions marginally improve the barriers by 1-4 kcal/mol and more substantially improve the reaction energies by 9-15 kcal/mol. For H2 capture and hydride transfer, the reaction energies for the U and Np species are similar. For both actinides, like-for-like An-O → An-N substitutions lead to improved reaction energies. Interestingly, in a recent report, it seemingly appears that U-O (siloxide) → U-N (silylamide) leads to complete shutdown of reactivity for H2 capture and hydride transfer. This observation is reproduced and explained with calculations. The ligand environments of the siloxide and silylamide that were compared are vastly different. The steric environment of the siloxide is conducive for reactivity while the particular silylamide is not. We conclude that small-molecule activation with organometallic neptunium species is achievable with a guided choice of ligands. Additional emphasis should be placed on ligands that can allow for improved transition state barriers.

15.
Hum Gene Ther ; 31(3-4): 145-150, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31910049

RESUMEN

The National Gene Vector Biorepository (NGVB) program has been highly accessed by gene therapy investigators. The reagent repository has distributed over 1,000 reagents to 397 investigators. The Pharmacology/Toxicology Archive contains over 36,000 specimens from a variety of adeno-associated virus (AAV), adenoviral, and other pharmacology/toxicology studies. NGVB also maintains a searchable database of gene therapy pharmacology/toxicology studies to promote data sharing. NGVB has provided Food and Drug Administration (FDA)-mandated replication-competent virus testing for over 70 clinical trials. From 2008 to 2018, there have been 114 publications acknowledging the NGVB. It is unlikely that any other National Institutes of Health (NIH)-funded program has served as many gene therapy investigators as the NGVB.


Asunto(s)
Bancos de Muestras Biológicas , Servicios de Laboratorio Clínico , Terapia Genética , Vectores Genéticos , Laboratorios , Bancos de Muestras Biológicas/organización & administración , Servicios de Laboratorio Clínico/organización & administración , Servicios de Salud Comunitaria/organización & administración , Bases de Datos Factuales , Vectores Genéticos/clasificación , Vectores Genéticos/genética , Humanos , Laboratorios/organización & administración
16.
Evol Appl ; 12(9): 1823-1836, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31548860

RESUMEN

The influence of human harvest on evolution of secondary sexual characteristics has implications for sustainable management of wildlife populations. The phenotypic consequences of selectively removing males with large horns or antlers from ungulate populations have been a topic of heightened concern in recent years. Harvest can affect size of horn-like structures in two ways: (a) shifting age structure toward younger age classes, which can reduce the mean size of horn-like structures, or (b) selecting against genes that produce large, fast-growing males. We evaluated effects of age, climatic and forage conditions, and metrics of harvest on horn size and growth of mountain sheep (Ovis canadensis ssp.) in 72 hunt areas across North America from 1981 to 2016. In 50% of hunt areas, changes in mean horn size during the study period were related to changes in age structure of harvested sheep. Environmental conditions explained directional changes in horn growth in 28% of hunt areas, 7% of which did not exhibit change before accounting for effects of the environment. After accounting for age and environment, horn size of mountain sheep was stable or increasing in the majority (~78%) of hunt areas. Age-specific horn size declined in 44% of hunt areas where harvest was regulated solely by morphological criteria, which supports the notion that harvest practices that are simultaneously selective and intensive might lead to changes in horn growth. Nevertheless, phenotypic consequences are not a foregone conclusion in the face of selective harvest; over half of the hunt areas with highly selective and intensive harvest did not exhibit age-specific declines in horn size. Our results demonstrate that while harvest regimes are an important consideration, horn growth of harvested male mountain sheep has remained largely stable, indicating that changes in horn growth patterns are an unlikely consequence of harvest across most of North America.

17.
PLoS One ; 14(7): e0219128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31310634

RESUMEN

Forested lands in the western USA have undergone changes in management and condition that are resulting in a shift towards climax vegetation. These changes can influence the quality and quantity of forage for herbivores that rely on early-seral plants. To evaluate how management of forested landscapes might affect nutrition for Shiras moose (A. a. shirasi) at large spatial scales, we focused on shrubs and evaluated summer diet composition, forage availability, and forage quality across 21 population management units encompassing >36,000 km2 in northern Idaho, USA. We identified 17 shrub species in the diets of moose, 11 of which comprised the bulk of the diets. These forage shrubs varied markedly in both energy (mean digestible energy for leaves ranged from 9.62 to 12.89 kJ/g) and protein (mean digestible protein for leaves ranged from 1.73 to 7.90%). By adapting established field sampling methods and integrating recent advances in remote sensing analyses in a modeling framework, we predicted approximations of current and past (i.e., 1984) quantities of forage shrubs across northern Idaho. We also created a qualitative index of population trend for moose across population management units using harvest data. Predicted quantities of forage shrubs varied widely across the study area with generally higher values at more northern latitudes. The quantity of forage shrubs was estimated to have declined over the past 30 years in about half of the population management units, with the greatest declines predicted for high-energy forage species. The population trend index was correlated with the percent change in availability of moderate-energy forage shrubs, indicating that availability of forage shrubs and change in availability over time might be affecting population dynamics for moose in northern Idaho. Our study highlights the importance of assessing how changes in forest management across broad spatiotemporal extents could affect wildlife and their habitats.


Asunto(s)
Ciervos/fisiología , Dieta , Bosques , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Ecosistema , Femenino , Herbivoria , Idaho , Masculino , Plantas Comestibles , Dinámica Poblacional/tendencias , Estaciones del Año , Análisis Espacio-Temporal
18.
J Anim Ecol ; 88(5): 780-792, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30825191

RESUMEN

Crop raiding by wildlife poses major threats to both wildlife conservation and human well-being in agroecosystems worldwide. These threats are particularly acute in many parts of Africa, where crop raiders include globally threatened megafauna such as elephants, and where smallholder agriculture is a primary source of human livelihood. One framework for understanding herbivore feeding behaviour, the forage-maturation hypothesis, predicts that herbivores should align their movements with intermediate forage biomass (i.e., peak green-up); this phenomenon is known as "surfing the green wave." Crop-raiding elephants, however, often consume not just foliage, but also fruits and tubers (e.g., maize and potatoes), which generally mature after seasonal peaks in photosynthetic activity. Thus, although elephants have been reported to surf the green wave in natural habitats, they may utilize a different strategy in cultivated landscapes by selecting crops that are "browning down." We sought to understand the factors that underpin movement of elephants into agricultural landscapes. In Mozambique's Gorongosa National Park, we used movement data from GPS-collared elephants, together with precipitation records, remotely sensed estimates of landscape greenness (NDVI), DNA-based diet analysis, measurements of plant nutritional quality and survey-based metrics of crop availability to understand spatiotemporal variation in elephant crop-raiding behaviour. Elephants tracked peak NDVI while foraging inside the Park. During the dry season, however, when NDVI within the Park declined and availability of mature crops was high, crop raiding increased dramatically, and elephants consistently selected crop plants that were browning down while foraging in cultivated landscapes. Crops contained significantly higher digestible energy than wild food plants, but comparable (and sometimes lower) levels of digestible protein, suggesting that this foraging strategy maximized energy rather than protein intake. Our study is the first to combine GPS tracking data with high-resolution diet analysis and community-based reporting of crop availability to reveal fine-scale plasticity in foraging behaviour of elephants at the human-wildlife interface. Our results extend the forage-maturation hypothesis by showing that elephants surf waves of plant brown-down in cultivated landscapes. These findings can aid efforts to reduce human-elephant conflict by enabling wildlife managers to prioritize mitigation actions in time and space with limited resources.


Asunto(s)
Elefantes , África , Animales , Conservación de los Recursos Naturales , Productos Agrícolas , Ecosistema , Humanos
19.
Science ; 364(6436): 173-177, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30846612

RESUMEN

Populations of the world's largest carnivores are declining and now occupy mere fractions of their historical ranges. Theory predicts that when apex predators disappear, large herbivores become less fearful, occupy new habitats, and modify those habitats by eating new food plants. Yet experimental support for this prediction has been difficult to obtain in large-mammal systems. After the extirpation of leopards and African wild dogs from Mozambique's Gorongosa National Park, forest-dwelling antelopes [bushbuck (Tragelaphus sylvaticus)] expanded into treeless floodplains, where they consumed novel diets and suppressed a common food plant [waterwort (Bergia mossambicensis)]. By experimentally simulating predation risk, we demonstrate that this behavior was reversible. Thus, whereas anthropogenic predator extinction disrupted a trophic cascade by enabling rapid differentiation of prey behavior, carnivore restoration may just as rapidly reestablish that cascade.


Asunto(s)
Carnívoros , Ecosistema , Extinción Biológica , Conducta Predatoria , Animales , Antílopes , Canidae , Cadena Alimentaria , Bosques , Herbivoria , Mozambique , Parques Recreativos , Dinámica Poblacional
20.
Ecol Appl ; 28(8): 2082-2091, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30179283

RESUMEN

Recurrent environmental changes often prompt animals to alter their behavior leading to predictable patterns across a range of temporal scales. The nested nature of circadian and seasonal behavior complicates tests for effects of rarer disturbance events like fire. Fire can dramatically alter plant community structure, with important knock-on effects at higher trophic levels, but the strength and timing of fire's effects on herbivores remain unclear. We combined prescribed fire treatments with fine-scale location data to quantify herbivore responses to fire across three temporal scales. Between 2001 and 2003, 26 stands of fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned; 27 similar stands were left untreated as experimental controls. Analyzing female elk (Cervus canadensis) locations across 21 yr (1996-2016), we found crepuscular, seasonal, and successional shifts in behavioral responses to fire. Elk displayed "commuting" behavior, avoiding burns during the day, but selecting them at night. Elk selection for burns was strongest in early summer and the relative probability of elk using burns peaked quickly (5 yr post burn) before gradually returning to pre-treatment levels (15 yr post burn). Our results demonstrate that fire history has complex, persistent effects on herbivore behavior, and suggest that herbivores benefit from heterogeneous landscapes containing a range of successional stages.


Asunto(s)
Ciervos/fisiología , Conducta Alimentaria , Incendios , Herbivoria , Abies , Animales , Ritmo Circadiano , Femenino , Oregon , Pseudotsuga , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA