Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622654

RESUMEN

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/genética , Cuerpos de Lewy/patología , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/patología , Ratones Transgénicos , Inmunoterapia/métodos , Citocinas , Inmunoglobulina G
2.
Front Immunol ; 15: 1339325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444862

RESUMEN

Introduction: The microphthalmia transcription factor Mitf has been shown to regulate B cell activation and tolerance. However, the underlying B cell-specific mechanisms responsible, and those that distinguish Mitf from closely related Mitf/TFE (MiT) transcription factors Tfe3, Tfeb, and Tfec, remain obscure. Methods: Two complementary mouse models of Mitf and MiT deficiency were used: the Mitfmi-vga9/mi-vga9 systemic loss-of-function mutation, and B-cell specific MiT family inactivation via transgenic expression of a trans-dominant negative (TDN) protein (TDN-B). These models were employed to identify MiT family candidate target genes and pathways. Results: Both models displayed spontaneous splenomegaly coincident with elevated plasma cell numbers, autoantibody titers, and proteinuria. These abnormalities appeared dependent on T helper cells, but independent of other non-B cell intrinsic effects of systemic Mitf inactivation. MiT inactivation in B cells augmented aspects of lupus-like autoimmune disease on the C57BL/6-Faslpr/lpr background. In both models, RNAseq of ex vivo resting B cells showed transcriptional upregulation of genes that control cell cycle, germinal center responses, and plasma cell differentiation. Among the genes strongly upregulated in both models were Socs6, Isp53 (Baiap1), S1pR2, and IgG2b/c. Mitf null B cells, but not TDN-B cells, showed evidence of type I interferon dysregulation. Discussion: These studies clarify Mitf's role as 1) a key regulator of a B cell intrinsic germinal center program that influences self-tolerance through novel target genes, and 2) a regulator of systemic inflammatory processes that can impact the B cell microenvironment. This distinction of Mitf's function from that of related MiT transcription factors advances our understanding of B cell regulation and autoimmunity.


Asunto(s)
Linfocitos B , Centro Germinal , Animales , Ratones , Expresión Génica , Homeostasis , Ratones Endogámicos C57BL
3.
Bone Marrow Transplant ; 59(5): 615-624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38347187

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) offers a curative option for patients with certain non-malignant hematological diseases. High-dose post-transplant cyclophosphamide (PT-Cy) (200 mg/kg) and sirolimus (3 mg/kg), (HiC) synergistically induce stable mixed chimerism. Further, sirolimus and cytotoxic T lymphocyte-associated antigen-4 immunoglobulin (CTLA4-Ig), also known as Abatacept (Aba), promote immune tolerance and allograft survival. Here, in a major histocompatibility complex (MHC)-mismatched allo-HCT murine model, we combined Aba and/or T-cell depleting anti-Thy1.2 (Thy) with a lower dose of PT-Cy (50 mg/kg) and Sirolimus (3 mg/kg), (LoC). While mice in the LoC group showed graft rejection, the addition of Thy to LoC induced similar donor chimerism levels when compared to the HiC group. However, the addition of Aba to LoC led to graft acceptance only in younger mice. When Thy was added to the LoC+Aba setting, graft acceptance was restored in both age groups. Engrafted groups displayed significantly reduced frequencies of recipient-specific interferon-γ-producing T cells as well as an increased frequency in regulatory T cells (Tregs) except in the LoC+Aba group. Splenocytes from engrafted mice showed no proliferation upon restimulation with Balb/c stimulators. Collectively, in combination with Aba or Thy, LoC may be considered to reduce graft rejection in patients who undergo allo-HCT.


Asunto(s)
Abatacept , Ciclofosfamida , Depleción Linfocítica , Sirolimus , Animales , Ciclofosfamida/farmacología , Sirolimus/farmacología , Ratones , Abatacept/farmacología , Abatacept/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/métodos , Ratones Endogámicos BALB C , Quimera por Trasplante , Trasplante Homólogo/métodos , Aloinjertos
4.
Obesity (Silver Spring) ; 31(2): 466-478, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36628649

RESUMEN

OBJECTIVE: Colchicine is known to reduce inflammation and improve endothelial cell function and atherosclerosis in obesity, but there is little knowledge of the specific circulating leukocyte populations that are modulated by colchicine. METHODS: A secondary analysis of a double-blind randomized controlled trial of colchicine 0.6 mg or placebo twice daily for 3 months on circulating leukocyte populations and regulation of the immune secretome in 35 adults with obesity was performed. RESULTS: Colchicine altered multiple innate immune cell populations, including dendritic cells and lymphoid progenitor cells, monocytes, and natural killer cells when compared with placebo. Among all subjects and within the colchicine group, changes in natural killer cells were significantly positively associated with reductions in biomarkers of inflammation, including cyclooxygenase 2, pulmonary surfactant-associated protein D, myeloperoxidase, proteinase 3, interleukin-16, and resistin. Changes in dendritic cells were positively correlated with changes in serum heart-type fatty acid-binding protein concentrations. Additionally, colchicine treatment reduced cluster of differentiation (CD) CD4+ T effector cells and CD8+ T cytotoxic cells. Conversely, colchicine increased CD4+ and CD8+ T central memory cells and activated CD38High CD8+ T cells. Changes in CD4+ T effector cells were associated with changes in serum heart-type fatty acid-binding protein. CONCLUSIONS: In adults with obesity, colchicine significantly affects circulating leukocyte populations involved in both innate and adaptive immune systems along with the associated inflammatory secretome.


Asunto(s)
Colchicina , Leucocitos Mononucleares , Adulto , Humanos , Colchicina/farmacología , Colchicina/uso terapéutico , Obesidad/complicaciones , Inflamación/metabolismo , Proteínas de Unión a Ácidos Grasos/uso terapéutico
5.
Front Immunol ; 11: 637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362895

RESUMEN

The production of antibody-secreting plasma cells and memory B cells requires the interaction of T follicular helper (Tfh) cells with B cells in the follicle and is modulated by T follicular regulatory (Tfr) cells. We compare the effects of Tfr cells in an in vitro model of bystander Tfh function in the absence of BCR engagement and in a model in which mimics cognate T-B interactions in which the BCR is engaged. In the absence of Tfr cells, Tfh cells from primed mice induce naive B cell differentiation into GC B cells and class switch recombination (CSR) in the presence of anti-CD3 alone or anti-CD3/IgM in a contact-dependent manner. Addition of primed Tfr cells efficiently suppressed GC B cell proliferation, differentiation and CSR in the anti-CD3 alone cultures, but only moderately suppressed BCR-stimulated B cells. When stimulated with anti-CD3 alone, IL-4 is critical for the induction of GC B cells and CSR. IL-21 plays a minimal role in GC B cell differentiation, but a greater role in switching. When the BCR is engaged, IL-4 is primarily required for switching and IL-21 only modestly affects switching. CD40L expression was critical for Tfh-mediated B cell proliferation/differentiation in the absence of B cell engagement. When the BCR was engaged, proliferation of CD40 deficient B cells was partially restored, but was susceptible to suppression by Tfr. These studies suggest that in vitro Tfr suppressor function is complex and is modulated by BCR signaling and CD40-CD40L interactions.


Asunto(s)
Linfocitos B/inmunología , Antígenos CD40/metabolismo , Centro Germinal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD40/genética , Comunicación Celular , Células Cultivadas , Interleucina-4/metabolismo , Interleucinas/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
6.
PLoS Pathog ; 14(4): e1006985, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29672594

RESUMEN

Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute, chronic infectious diseases and tumor microenvironment remains unclear. We recently demonstrated that IFN-α/ß receptor (IFNAR) signaling promotes Treg function in autoimmunity. Here we dissected the functional role of IFNAR-signaling in Tregs using Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice in acute LCMV Armstrong, chronic Clone-13 viral infection, and in tumor models. In both viral infection and tumor models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced Treg associated activation antigens. LCMV-specific CD8+ T cells and tumor infiltrating lymphocytes from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral and antitumor IFN-γ and TNF-α. In chronic viral model, the numbers of antiviral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs during chronic infection, and higher tumor burden than the WT controls. The enhanced activated phenotype was evident through transcriptome analysis of IFNARfl/flxFoxp3YFP-Cre mice Tregs during infection demonstrated differential expression of a unique gene signature characterized by elevated levels of genes involved in suppression and decreased levels of genes mediating apoptosis. Thus, IFN signaling in Tregs is beneficial to host resulting in a more effective antiviral response and augmented antitumor immunity.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Neoplasias del Colon/inmunología , Interferón Tipo I/farmacología , Coriomeningitis Linfocítica/inmunología , Melanoma Experimental/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Antivirales/farmacología , Infecciones por Arenaviridae/tratamiento farmacológico , Infecciones por Arenaviridae/metabolismo , Infecciones por Arenaviridae/virología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/virología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Interferón gamma/metabolismo , Coriomeningitis Linfocítica/tratamiento farmacológico , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/fisiología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Microambiente Tumoral/efectos de los fármacos
7.
J Immunol ; 196(1): 144-55, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26582951

RESUMEN

A subpopulation (60-70%) of Foxp3(+) regulatory T cells (Tregs) in both mouse and man expresses the transcription factor Helios, but its role in Treg function is still unknown. We generated Treg-specific Helios-deficient mice to examine the function of Helios in Tregs. We show that the selective deletion of Helios in Tregs leads to slow, progressive systemic immune activation, hypergammaglobulinemia, and enhanced germinal center formation in the absence of organ-specific autoimmunity. Helios-deficient Treg suppressor function was normal in vitro, as well as in an in vivo inflammatory bowel disease model. However, Helios-deficient Tregs failed to control the expansion of pathogenic T cells derived from scurfy mice, failed to mediate T follicular regulatory cell function, and failed to control both T follicular helper cell and Th1 effector cell responses. In competitive settings, Helios-deficient Tregs, particularly effector Tregs, were at a disadvantage, indicating that Helios regulates effector Treg fitness. Thus, we demonstrate that Helios controls certain aspects of Treg-suppressive function, differentiation, and survival.


Asunto(s)
Enfermedades Autoinmunes/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética , Animales , Enfermedades Autoinmunes/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/inmunología , Centro Germinal/inmunología , Hipergammaglobulinemia/genética , Hipergammaglobulinemia/inmunología , Factor de Transcripción Ikaros/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/citología , Células TH1/inmunología , Factores de Transcripción/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA