Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(3): e1010503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498520

RESUMEN

Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.


Asunto(s)
Chlamydomonas , Chlamydomonas/metabolismo , Ciclo Celular/genética , División Celular , Quinasas Ciclina-Dependientes/genética , Proteínas de Unión al ARN/genética , Tamaño de la Célula
2.
Plant J ; 92(6): 1232-1244, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28980350

RESUMEN

Chlamydomonas reinhardtii is a unicellular green alga that has attracted interest due to its potential biotechnological applications, and as a model for algal biofuel and energy metabolism. Despite all the advantages that this unicellular alga offers, poor and inconsistent expression of nuclear transgenes remains an obstacle for basic and applied research. We used a data-mining strategy to identify highly expressed genes in Chlamydomonas whose flanking sequences were tested for the ability to drive heterologous nuclear transgene expression. Candidates identified in this search included two ribosomal protein genes, RPL35a and RPL23, and ferredoxin, FDX1, whose flanking regions including promoters, terminators and untranslated sequences could drive stable luciferase transgene expression to significantly higher levels than the commonly used Hsp70A-RBCS2 (AR) hybrid promoter/terminator sequences. The RPL23 flanking sequences were further tested using the zeocin resistance gene sh-ble as a reporter in monocistronic and dicistronic constructs, and consistently yielded higher numbers of zeocin-resistant transformants and higher levels of resistance than AR- or PSAD-based vectors. Chlamydomonas RPL23 sequences also enabled transgene expression in Volvox carteri. Our study provides an additional benchmark for strong constitutive expression of transgenes in Chlamydomonas, and develops a general approach for identifying flanking sequences that can be used to drive transgene expression for any organism where transcriptome data are available.


Asunto(s)
Región de Flanqueo 3'/genética , Región de Flanqueo 5'/genética , Chlamydomonas reinhardtii/genética , Volvox/genética , Núcleo Celular/metabolismo , Expresión Génica , Vectores Genéticos/genética , Luciferasas/genética , Regiones Promotoras Genéticas/genética , Regiones Terminadoras Genéticas/genética , Transgenes , Regiones no Traducidas/genética
3.
Elife ; 5: e10767, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27015111

RESUMEN

Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a 'counting' mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control.


Asunto(s)
División Celular , Tamaño de la Célula , Chlamydomonas reinhardtii/enzimología , Quinasas Ciclina-Dependientes/metabolismo , Chlamydomonas reinhardtii/genética , Quinasas Ciclina-Dependientes/genética , Expresión Génica , Técnicas de Inactivación de Genes , Transducción de Señal
4.
Plant Physiol ; 166(4): 1852-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25361960

RESUMEN

We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses.


Asunto(s)
Aclimatación , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/fisiología , Glutatión/metabolismo , Azufre/metabolismo , Proteínas Algáceas/genética , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Aniones/metabolismo , Secuencia de Bases , Ciclo Celular , Puntos de Control del Ciclo Celular , Chlamydomonas reinhardtii/genética , Citoplasma/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Mutación , Filogenia , Análisis de Secuencia de ARN , Sulfatos/metabolismo
5.
FEBS Lett ; 583(12): 1887-94, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19450586

RESUMEN

The SNF1/AMPK/SnRK1 complex is an intracellular energy sensor composed of three types of subunits: the SnRK1 kinase and two regulatory, non-catalytic subunits (designated beta and gamma). We have previously described an atypical plant gamma-subunit, AKINbetagamma, which contains an N-terminal tail similar to the so-called KIS domain normally present in beta-subunits. However, it is not known whether AKINbetagamma normally associates with endogenous SnRK1 complexes in vivo, nor how its unique domain structure might contribute to SnRK1 function. Here, we present evidence that maize AKINbetagamma is an integral component of active SnRK1 complexes in plant cells. Using complementary methodological approaches, we also show that AKINbetagamma associates through homomeric interactions mediated by both, the gamma- and, unexpectedly, the KIS/CBM domain.


Asunto(s)
Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Arabidopsis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Células Cultivadas , Dimerización , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Cebollas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA