Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Dev Biol ; 11(3)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37489330

RESUMEN

Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor Adenomatous Polyposis Coli (apc) disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, apcmcr/mcr larvae express substantially higher levels of complement c3, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in stroma-derived factor 1 (sdf1/cxcl12), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in apc mutant zebrafish, including a splice variant that deletes a conserved domain in semaphorin 3f (sema3f), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for apc in CNC development in the context of some of the seminal findings of Mayor and colleagues.

2.
Gastroenterology ; 159(3): 1068-1084.e2, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32505743

RESUMEN

BACKGROUND & AIMS: Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS: We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS: Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION: Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.


Asunto(s)
Conductos Biliares/patología , Atresia Biliar/tratamiento farmacológico , Depuradores de Radicales Libres/farmacología , Oxidación-Reducción/efectos de los fármacos , Proteostasis/efectos de los fármacos , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Animales Modificados Genéticamente , Benzodioxoles/toxicidad , Conductos Biliares/citología , Conductos Biliares/efectos de los fármacos , Atresia Biliar/inducido químicamente , Atresia Biliar/genética , Atresia Biliar/patología , Línea Celular , GMP Cíclico/agonistas , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Depuradores de Radicales Libres/uso terapéutico , Glutatión/metabolismo , Humanos , Proteostasis/genética , Transducción de Señal/efectos de los fármacos , Pez Cebra
3.
Mol Cancer Res ; 18(4): 560-573, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988250

RESUMEN

High-grade sarcomas are metastatic and pose a serious threat to patient survival. Undifferentiated pleomorphic sarcoma (UPS) is a particularly dangerous and relatively common sarcoma subtype diagnosed in adults. UPS contains large quantities of extracellular matrix (ECM) including hyaluronic acid (HA), which is linked to metastatic potential. Consistent with these observations, expression of the HA receptor, hyaluronan-mediated motility receptor (HMMR/RHAMM), is tightly controlled in normal tissues and upregulated in UPS. Moreover, HMMR expression correlates with poor clinical outcome in these patients. Deregulation of the tumor-suppressive Hippo pathway is also linked to poor outcome in these patients. YAP1, the transcriptional regulator and central effector of Hippo pathway, is aberrantly stabilized in UPS and was recently shown to control RHAMM expression in breast cancer cells. Interestingly, both YAP1 and RHAMM are linked to TGFß signaling. Therefore, we investigated crosstalk between YAP1 and TGFß resulting in enhanced RHAMM-mediated cell migration and invasion. We observed that HMMR expression is under the control of both YAP1 and TGFß and can be effectively targeted with small-molecule approaches that inhibit these pathways. Furthermore, we found that RHAMM expression promotes tumor cell proliferation and migration/invasion. To test these observations in a robust and quantifiable in vivo system, we developed a zebrafish xenograft assay of metastasis, which is complimentary to our murine studies. Importantly, pharmacologic inhibition of the TGFß-YAP1-RHAMM axis prevents vascular migration of tumor cells to distant sites. IMPLICATIONS: These studies reveal key metastatic signaling mechanisms and highlight potential approaches to prevent metastatic dissemination in UPS.YAP1 and TGFß cooperatively enhance proliferation and migration/invasion of UPS and fibrosarcomas.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sarcoma/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Fibrosarcoma , Células HCT116 , Células HEK293 , Vía de Señalización Hippo , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Sarcoma/patología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , Pez Cebra
4.
ACS Med Chem Lett ; 9(1): 61-64, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29348813

RESUMEN

We report the first synthesis of the plant isoflavonoid biliatresone. The convergent synthesis has been applied to the synthesis of several analogs, which have facilitated the first structure-activity relationship study for this environmental toxin that, on ingestion, recapitulates the phenotype of biliary atresia.

5.
Hepatology ; 64(3): 894-907, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27102575

RESUMEN

UNLABELLED: Biliatresone is an electrophilic isoflavone isolated from Dysphania species plants that has been causatively linked to naturally occurring outbreaks of a biliary atresia (BA)-like disease in livestock. Biliatresone has selective toxicity for extrahepatic cholangiocytes (EHCs) in zebrafish larvae. To better understand its mechanism of toxicity, we performed transcriptional profiling of liver cells isolated from zebrafish larvae at the earliest stage of biliatresone-mediated biliary injury, with subsequent comparison of biliary and hepatocyte gene expression profiles. Transcripts encoded by genes involved in redox stress response, particularly those involved in glutathione (GSH) metabolism, were among the most prominently up-regulated in both cholangiocytes and hepatocytes of biliatresone-treated larvae. Consistent with these findings, hepatic GSH was depleted at the onset of biliary injury, and in situ mapping of the hepatic GSH redox potential using a redox-sensitive green fluorescent protein biosensor showed that it was significantly more oxidized in EHCs both before and after treatment with biliatresone. Pharmacological and genetic manipulation of GSH redox homeostasis confirmed the importance of GSH in modulating biliatresone-induced injury given that GSH depletion sensitized both EHCs and the otherwise resistant intrahepatic cholangiocytes to the toxin, whereas replenishing GSH level by N-acetylcysteine administration or activation of nuclear factor erythroid 2-like 2 (Nrf2), a transcriptional regulator of GSH synthesis, inhibited EHC injury. CONCLUSION: These findings strongly support redox stress as a critical contributing factor in biliatresone-induced cholangiocyte injury, and suggest that variations in intrinsic stress responses underlie the susceptibility profile. Insufficient antioxidant capacity of EHCs may be critical to early pathogenesis of human BA. (Hepatology 2016;64:894-907).


Asunto(s)
Benzodioxoles/toxicidad , Atresia Biliar/inducido químicamente , Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Acetilcisteína , Animales , Animales Modificados Genéticamente , Atresia Biliar/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Isotiocianatos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Sulfóxidos , Pez Cebra
6.
Chem Res Toxicol ; 28(8): 1519-21, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26175131

RESUMEN

We identified a reactive natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis collected in Australia that produces extrahepatic biliary atresia in a zebrafish model. Three additional isoflavonoids, including the known isoflavone betavulgarin, were also isolated. Biliatresone is in the very rare 1,2-diaryl-2-propenone class of isoflavonoids. The α-methylene of the 1,2-diaryl-2-propenone of biliatresone spontaneously reacts via Michael addition in the formation of water and methanol adducts. The lethal dose of biliatresone in a zebrafish assay was 1 µg/mL, while the lethal dose of synthetic 1,2-diaryl-2-propen-1-one was 5 µg/mL, suggesting 1,2-diaryl-2-propenone as the toxic Michael acceptor.


Asunto(s)
Benzodioxoles/química , Benzodioxoles/toxicidad , Chenopodiaceae/química , Extractos Vegetales/toxicidad , Propiofenonas/química , Propiofenonas/toxicidad , Toxinas Biológicas/química , Animales , Bioensayo , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Dosificación Letal Mediana , Estructura Molecular , Pez Cebra/embriología
7.
Sci Transl Med ; 7(286): 286ra67, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25947162

RESUMEN

Biliary atresia (BA) is a rapidly progressive and destructive fibrotic disorder of unknown etiology affecting the extrahepatic biliary tree of neonates. Epidemiological studies suggest that an environmental factor, such as a virus or toxin, is the cause of the disease, although none have been definitively established. Several naturally occurring outbreaks of BA in Australian livestock have been associated with the ingestion of unusual plants by pregnant animals during drought conditions. We used a biliary secretion assay in zebrafish to isolate a previously undescribed isoflavonoid, biliatresone, from Dysphania species implicated in a recent BA outbreak. This compound caused selective destruction of the extrahepatic, but not intrahepatic, biliary system of larval zebrafish. A mutation that enhanced biliatresone toxicity mapped to a region of the zebrafish genome that has conserved synteny with an established human BA susceptibility locus. The toxin also caused loss of cilia in neonatal mouse extrahepatic cholangiocytes in culture and disrupted cell polarity and monolayer integrity in cholangiocyte spheroids. Together, these findings provide direct evidence that BA could be initiated by perinatal exposure to an environmental toxin.


Asunto(s)
Amaranthaceae/química , Atresia Biliar/etiología , Flavonoides/química , Extractos Vegetales/química , Animales , Australia , Atresia Biliar/patología , Atresia Biliar/veterinaria , Bioensayo , Bovinos , Modelos Animales de Enfermedad , Exoma , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Innata , Ratones , Microscopía Confocal , Mutación , Ratas , Ovinos , Pez Cebra
8.
PLoS One ; 8(10): e77670, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147052

RESUMEN

North American Indian Childhood Cirrhosis (NAIC) is a rare, autosomal recessive, progressive cholestatic disease of infancy affecting the Cree-Ojibway first Nations of Quebec. All NAIC patients are homozygous for a missense mutation (R565W) in CIRH1A, the human homolog of the yeast nucleolar protein Utp4. Utp4 is part of the t-Utp subcomplex of the small subunit (SSU) processome, a ribonucleoprotein complex required for ribosomal RNA processing and small subunit assembly. NAIC has thus been proposed to be a primary ribosomal disorder (ribosomopathy); however, investigation of the pathophysiologic mechanism of this disease has been hindered by lack of an animal model. Here, using a morpholino oligonucleotide (MO)-based loss-of-function strategy, we have generated a model of NAIC in the zebrafish, Danio rerio. Zebrafish Cirhin shows substantial homology to the human homolog, and cirh1a mRNA is expressed in developing hepatocytes and biliary epithelial cells. Injection of two independent MOs directed against cirh1a at the one-cell stage causes defects in canalicular and biliary morphology in 5 dpf larvae. In addition, 5 dpf Cirhin-deficient larvae have dose-dependent defects in hepatobiliary function, as assayed by the metabolism of an ingested fluorescent lipid reporter. Previous yeast and in vitro studies have shown that defects in ribosome biogenesis cause stabilization and nuclear accumulation of p53, which in turn causes p53-mediated cell cycle arrest and/or apoptosis. Thus, the nucleolus appears to function as a cellular stress sensor in some cell types. In accordance with this hypothesis, transcriptional targets of p53 are upregulated in Cirhin-deficient zebrafish embryos, and defects in biliary function seen in Cirhin-deficient larvae are completely abrogated by mutation of tp53. Our data provide the first in vivo evidence of a role for Cirhin in biliary development, and support the hypothesis that congenital defects affecting ribosome biogenesis can activate a cellular stress response mediated by p53.


Asunto(s)
Cirrosis Hepática Biliar/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Hepatocitos/metabolismo , Humanos , Hibridación in Situ , Larva/metabolismo , Hígado/citología , Hígado/metabolismo , Cirrosis Hepática Biliar/genética , Mutación , Mutación Missense/genética , Ribonucleoproteínas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
9.
PLoS Genet ; 8(11): e1003106, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209449

RESUMEN

Mutations in the retinoblastoma tumor suppressor gene (rb1) cause both sporadic and familial forms of childhood retinoblastoma. Despite its clinical relevance, the roles of rb1 during normal retinotectal development and function are not well understood. We have identified mutations in the zebrafish space cadet locus that lead to a premature truncation of the rb1 gene, identical to known mutations in sporadic and familial forms of retinoblastoma. In wild-type embryos, axons of early born retinal ganglion cells (RGC) pioneer the retinotectal tract to guide later born RGC axons. In rb1 deficient embryos, these early born RGCs show a delay in cell cycle exit, causing a transient deficit of differentiated RGCs. As a result, later born mutant RGC axons initially fail to exit the retina, resulting in optic nerve hypoplasia. A significant fraction of mutant RGC axons eventually exit the retina, but then frequently project to the incorrect optic tectum. Although rb1 mutants eventually establish basic retinotectal connectivity, behavioral analysis reveals that mutants exhibit deficits in distinct, visually guided behaviors. Thus, our analysis of zebrafish rb1 mutants reveals a previously unknown yet critical role for rb1 during retinotectal tract development and visual function.


Asunto(s)
Retina , Proteína de Retinoblastoma/genética , Retinoblastoma/genética , Pez Cebra , Animales , Axones/metabolismo , Axones/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Mutación , Retina/citología , Retina/crecimiento & desarrollo , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Retinoblastoma/patología , Proteína de Retinoblastoma/metabolismo , Colículos Superiores/citología , Colículos Superiores/metabolismo
10.
Hepatology ; 53(3): 905-14, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21319190

RESUMEN

UNLABELLED: Infantile cholestatic disorders arise in the context of progressively developing intrahepatic bile ducts. Biliary atresia (BA), a progressive fibroinflammatory disorder of extra- and intrahepatic bile ducts, is the most common identifiable cause of infantile cholestasis and the leading indication for liver transplantation in children. The etiology of BA is unclear, and although there is some evidence for viral, toxic, and complex genetic causes, the exclusive occurrence of BA during a period of biliary growth and remodeling suggests an importance of developmental factors. Interestingly, interferon-γ (IFN-γ) signaling is activated in patients and in the frequently utilized rhesus rotavirus mouse model of BA, and is thought to play a key mechanistic role. Here we demonstrate intrahepatic biliary defects and up-regulated hepatic expression of IFN-γ pathway genes caused by genetic or pharmacological inhibition of DNA methylation in zebrafish larvae. Biliary defects elicited by inhibition of DNA methylation were reversed by treatment with glucocorticoid, suggesting that the activation of inflammatory pathways was critical. DNA methylation was significantly reduced in bile duct cells from BA patients compared to patients with other infantile cholestatic disorders, thereby establishing a possible etiologic link between decreased DNA methylation, activation of IFN-γ signaling, and biliary defects in patients. CONCLUSION: Inhibition of DNA methylation leads to biliary defects and activation of IFN-γ-responsive genes, thus sharing features with BA, which we determine to be associated with DNA hypomethylation. We propose epigenetic activation of IFN-γ signaling as a common etiologic mechanism of intrahepatic bile duct defects in BA.


Asunto(s)
Conductos Biliares/anomalías , Conductos Biliares/crecimiento & desarrollo , Metilación de ADN/efectos de los fármacos , Adenosilhomocisteinasa/genética , Animales , Azacitidina/farmacología , Conductos Biliares/efectos de los fármacos , Atresia Biliar/etiología , Atresia Biliar/fisiopatología , Epigenómica , Humanos , Inflamación/fisiopatología , Interferón gamma/fisiología , Pez Cebra
11.
Gastroenterology ; 140(5): 1547-55.e10, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21315719

RESUMEN

BACKGROUND & AIMS: Elys is a conserved protein that directs nuclear pore complex (NPC) assembly in mammalian cell lines and developing worms and zebrafish. Related studies in these systems indicate a role for Elys in DNA replication and repair. Intestinal epithelial progenitors of zebrafish elys mutants undergo apoptosis early in development. However, it is not known whether loss of Elys has a similar effect in the mammalian intestine or whether the NPC and DNA repair defects each contribute to the overall phenotype. METHODS: We developed mice in which a conditional Elys allele was inactivated in the developing intestinal epithelium and during preimplantation development. Phenotypes of conditional mutant mice were determined using immunohistochemical analysis for nuclear pore proteins, electron microscopy, and immunoblot analysis of DNA replication and repair proteins. RESULTS: Conditional inactivation of the Elys locus in the developing mouse intestinal epithelium led to a reversible delay in growth in juvenile mice that was associated with epithelial architecture distortion and crypt cell apoptosis. The phenotype was reduced in adult mutant mice, which were otherwise indistinguishable from wild-type mice. All mice had activated DNA damage responses but no evidence of NPC assembly defects. CONCLUSIONS: In mice, Elys maintains genome stability in intestinal epithelial progenitor cells, independent of its role in NPC assembly in zebrafish.


Asunto(s)
Apoptosis/genética , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Poro Nuclear/metabolismo , ARN/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Alelos , Animales , Southern Blotting , Western Blotting , Línea Celular , Reparación del ADN/genética , Modelos Animales de Enfermedad , Inestabilidad Genómica , Inmunohistoquímica , Mucosa Intestinal/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Poro Nuclear/ultraestructura , Fenotipo , Reacción en Cadena de la Polimerasa , Células Madre/ultraestructura , Factores de Transcripción/metabolismo , Pez Cebra
12.
Dev Dyn ; 239(3): 855-64, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20108354

RESUMEN

The Notch signaling pathway regulates specification of zebrafish liver progenitor cells towards a biliary cell fate. Here, using staged administration of a pharmacological inhibitor of Notch receptor processing, we show that activation of the Notch pathway is also important for growth and expansion of the intrahepatic biliary network in zebrafish larvae. Biliary expansion is accompanied by extensive cell proliferation and active remodeling of the nascent ductal network, as revealed by time lapse imaging of living zebrafish larvae that express a Notch responsive fluorescent reporter transgene. Together, these data support a model in which the Notch signal functions reiteratively during biliary development; first to specific biliary cells and then to direct remodeling of the nascent biliary network. As the Notch pathway plays a comparable role during mammalian biliary development, including humans, these studies also indicate broad conservation of the molecular mechanisms directing biliary development in vertebrates.


Asunto(s)
Conductos Biliares/embriología , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/metabolismo , Transducción de Señal , Animales , Linaje de la Célula , Proliferación Celular , Colorantes Fluorescentes/química , Inmunohistoquímica/métodos , Hígado/embriología , Microscopía Fluorescente/métodos , Modelos Biológicos , Factores de Tiempo , Transgenes , Pez Cebra
13.
Development ; 136(5): 865-75, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19201949

RESUMEN

Hepatic steatosis and liver degeneration are prominent features of the zebrafish ducttrip (dtp) mutant phenotype. Positional cloning identified a causative mutation in the gene encoding S-adenosylhomocysteine hydrolase (Ahcy). Reduced Ahcy activity in dtp mutants led to elevated levels of S-adenosylhomocysteine (SAH) and, to a lesser degree, of its metabolic precursor S-adenosylmethionine (SAM). Elevated SAH in dtp larvae was associated with mitochondrial defects and increased expression of tnfa and pparg, an ortholog of the mammalian lipogenic gene. Antisense knockdown of tnfa rescued hepatic steatosis and liver degeneration in dtp larvae, whereas the overexpression of tnfa and the hepatic phenotype were unchanged in dtp larvae reared under germ-free conditions. These data identify an essential role for tnfa in the mutant phenotype and suggest a direct link between SAH-induced methylation defects and TNF expression in human liver disorders associated with elevated TNFalpha. Although heterozygous dtp larvae had no discernible phenotype, hepatic steatosis was present in heterozygous adult dtp fish and in wild-type adult fish treated with an Ahcy inhibitor. These data argue that AHCY polymorphisms and AHCY inhibitors, which have shown promise in treating autoimmunity and other disorders, may be a risk factor for steatosis, particularly in patients with diabetes, obesity and liver disorders such as hepatitis C infection. Supporting this idea, hepatic injury and steatosis have been noted in patients with recently discovered AHCY mutations.


Asunto(s)
Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Adenosilhomocisteinasa/antagonistas & inhibidores , Animales , Secuencia de Bases , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Humanos , Larva/metabolismo , Lipogénesis/genética , Masculino , Metionina , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Mutación , Estrés Oxidativo , Fenotipo , Especificidad de la Especie , Tubercidina/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/antagonistas & inhibidores
14.
PLoS Genet ; 4(10): e1000240, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18974873

RESUMEN

The recessive lethal mutation flotte lotte (flo) disrupts development of the zebrafish digestive system and other tissues. We show that flo encodes the ortholog of Mel-28/Elys, a highly conserved gene that has been shown to be required for nuclear integrity in worms and nuclear pore complex (NPC) assembly in amphibian and mammalian cells. Maternal elys expression sustains zebrafish flo mutants to larval stages when cells in proliferative tissues that lack nuclear pores undergo cell cycle arrest and apoptosis. p53 mutation rescues apoptosis in the flo retina and optic tectum, but not in the intestine, where the checkpoint kinase Chk2 is activated. Chk2 inhibition and replication stress induced by DNA synthesis inhibitors were lethal to flo larvae. By contrast, flo mutants were not sensitized to agents that cause DNA double strand breaks, thus showing that loss of Elys disrupts responses to selected replication inhibitors. Elys binds Mcm2-7 complexes derived from Xenopus egg extracts. Mutation of elys reduced chromatin binding of Mcm2, but not binding of Mcm3 or Mcm4 in the flo intestine. These in vivo data indicate a role for Elys in Mcm2-chromatin interactions. Furthermore, they support a recently proposed model in which replication origins licensed by excess Mcm2-7 are required for the survival of human cells exposed to replication stress.


Asunto(s)
Apoptosis , Replicación del ADN , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Ciclo Celular , Quinasa de Punto de Control 2 , Daño del ADN , Genes p53 , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/embriología , Datos de Secuencia Molecular , Proteínas de Complejo Poro Nuclear/química , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/citología , Retina/embriología , Retina/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/química
15.
Dev Dyn ; 237(1): 124-31, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18095340

RESUMEN

Members of the onecut family of transcription factors play important roles in the development of the liver and pancreas. We have shown previously that onecut1 (hnf6) is important during the terminal stages of intrahepatic biliary development in zebrafish. Here we report the characterization of a third zebrafish onecut gene, onecut3 (oc3), and assay its expression during development and its role in biliary duct formation using morpholino antisense oligonucleotide-mediated knockdown. These experiments reveal an important role for oc3 during the earliest stages of zebrafish biliary development, and suggest that zebrafish oc3 is the functional ortholog of mammalian hnf6, a gene that directs biliary differentiation from bipotential progenitor cells. Consistent with this, zebrafish hnf6 expression was significantly reduced in oc3-deficient larvae. Knockdown of hnf6 in wild-type zebrafish larvae also significantly reduced oc3 expression, suggesting a complex interaction between onecut family member proteins during the latter stages of zebrafish biliary development.


Asunto(s)
Sistema Biliar/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Sistema Biliar/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factor Nuclear 6 del Hepatocito/genética , Factor Nuclear 6 del Hepatocito/metabolismo , Factor Nuclear 6 del Hepatocito/fisiología , Inmunohistoquímica , Hibridación in Situ , Queratinas/análisis , Larva/metabolismo , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
16.
PLoS Biol ; 5(11): e312, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18044988

RESUMEN

The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-delta yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.


Asunto(s)
Sistema Digestivo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Larva/enzimología , ARN Polimerasa III/genética , Pez Cebra/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/enzimología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Mutación , Oligonucleótidos Antisentido/farmacología , ARN Polimerasa III/metabolismo
17.
Cell Metab ; 3(4): 289-300, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581006

RESUMEN

The zebrafish fat-free (ffr) mutation was identified in a physiological screen for genes that regulate lipid metabolism. ffr mutant larvae are morphologically indistinguishable from wild-type sibling larvae, but their absorption of fluorescent lipids is severely impaired. Through positional cloning, we have identified a causative mutation in a highly conserved and ubiquitously expressed gene within the ffr locus. The Ffr protein contains a Dor-1 like domain typical of oligomeric Golgi complex (COG) gene, cog8. Golgi complex ultrastructure is disrupted in the ffr digestive tract. Consistent with a possible role in COG-mediated Golgi function, wild-type Ffr-GFP and COG8-mRFP fusion proteins partially colocalize in zebrafish blastomeres. Enterocyte retention of an endosomal lipid marker in ffr larvae support the idea that altered vesicle trafficking contributes to the ffr mutant defect. These data indicate that ffr is required for both Golgi structure and vesicular trafficking, and ultimately lipid transport.


Asunto(s)
Aparato de Golgi/ultraestructura , Absorción Intestinal , Metabolismo de los Lípidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Endosomas/fisiología , Enterocitos/química , Enterocitos/fisiología , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Aparato de Golgi/química , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fenotipo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Transportadoras , Proteínas de Transporte Vesicular/química , Pez Cebra , Proteínas de Pez Cebra/química
18.
Development ; 132(23): 5295-306, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16284120

RESUMEN

Arthrogryposis-renal dysfunction-cholestasis syndrome (ARC) is a rare cause of cholestasis in infants. Causative mutations in VPS33B, a gene that encodes a Class C vacuolar sorting protein, have recently been reported in individuals with ARC. We have identified a zebrafish vps33b-ortholog that is expressed in developing liver and intestine. Knockdown of vps33b causes bile duct paucity and impairs intestinal lipid absorption, thus phenocopying digestive defects characteristic of ARC. By contrast, neither motor axon nor kidney epithelial defects typically seen in ARC could be identified in vps33b-deficient larvae. Biliary defects in vps33b-deficient zebrafish larvae closely resemble the bile duct paucity associated with knockdown of the onecut transcription factor hnf6. Consistent with this, reduced vps33b expression was evident in hnf6-deficient larvae and in larvae with mutation of vhnf1, a downstream target of hnf6. Zebrafish vhnf1, but not hnf6, increases vps33b expression in zebrafish embryos and in mammalian liver cells. Electrophoretic mobility shift assays suggest that this regulation occurs through direct binding of vHnf1 to the vps33b promoter. These findings identify vps33b as a novel downstream target gene of the hnf6/vhnf1 pathway that regulates bile duct development in zebrafish. Furthermore, they show that tissue-specific roles for genes that regulate trafficking of intracellular proteins have been modified during vertebrate evolution.


Asunto(s)
Sistema Biliar/crecimiento & desarrollo , Factor Nuclear 6 del Hepatocito/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Colestasis/etiología , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 6 del Hepatocito/deficiencia , Factor Nuclear 6 del Hepatocito/metabolismo , Humanos , Larva/crecimiento & desarrollo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Mutación , Regiones Promotoras Genéticas , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Dev Biol ; 284(1): 84-101, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15963491

RESUMEN

Although many of the genes that regulate development of the endocrine pancreas have been identified, comparatively little is known about how the exocrine pancreas forms. Previous studies have shown that exocrine pancreas development may be modeled in zebrafish. However, the timing and mechanism of acinar and ductal differentiation and morphogenesis have not been described. Here, we characterize zebrafish exocrine pancreas development in wild type and mutant larvae using histological, immunohistochemical and ultrastructural analyses. These data allow us to identify two stages of zebrafish exocrine development. During the first stage, the exocrine anlage forms from rostral endodermal cells. During the second stage, proto-differentiated progenitor cells undergo terminal differentiation followed by acinar gland and duct morphogenesis. Immunohistochemical analyses support a model in which the intrapancreatic ductal system develops from progenitors that join to form a contiguous network rather than by branching morphogenesis of the pancreatic epithelium, as described for mammals. Contemporaneous appearance of acinar glands and ducts in developing larvae and their disruption in pancreatic mutants suggest that common molecular pathways may regulate gland and duct morphogenesis and differentiation of their constituent cells. By contrast, analyses of mind bomb mutants and jagged morpholino-injected larvae suggest that Notch signaling principally regulates ductal differentiation of bipotential exocrine progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Modelos Biológicos , Morfogénesis/fisiología , Páncreas/embriología , Transducción de Señal/fisiología , Pez Cebra/embriología , Animales , Proteínas de Unión al Calcio/genética , Endodermo/fisiología , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Mutagénesis , Páncreas/ultraestructura , Proteínas Serrate-Jagged , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética
20.
Mech Dev ; 122(2): 157-73, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15652704

RESUMEN

Intestinal development in amniotes is driven by interactions between progenitor cells derived from the three primary germ layers. Genetic analyses and gene targeting experiments in zebrafish offer a novel approach to dissect such interactions at a molecular level. Here we show that intestinal anatomy and architecture in zebrafish closely resembles the anatomy and architecture of the mammalian small intestine. The zebrafish intestine is regionalized and the various segments can be identified by epithelial markers whose expression is already segregated at the onset of intestinal differentiation. Differentiation of cells derived from the three primary germ layers begins more or less contemporaneously, and is preceded by a stage in which there is rapid cell proliferation and maturation of epithelial cell polarization. Analysis of zebrafish mutants with altered epithelial survival reveals that seemingly related single gene defects have different effects on epithelial differentiation and smooth muscle and enteric nervous system development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Intestinos/embriología , Intestinos/crecimiento & desarrollo , Animales , Antimetabolitos/farmacología , Tipificación del Cuerpo , Bromodesoxiuridina/farmacología , Diferenciación Celular , Proliferación Celular , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Células Epiteliales/citología , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Femenino , Peroxidasa de Rábano Silvestre/farmacología , Inmunohistoquímica , Hibridación in Situ , Mucosa Intestinal/metabolismo , Masculino , Modelos Biológicos , Músculo Liso/citología , Músculo Liso/metabolismo , Mutación , Neuronas/metabolismo , Fenotipo , ARN/metabolismo , Factores de Tiempo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA