RESUMEN
In situ vaccination is an attractive type of cancer immunotherapy, and methods of persistently dispersing immune agonists throughout the entire tumor are crucial for maximizing their therapeutic efficacy. Based on the probiotics usually used for dietary supplements, an immunomodulator-boosted Lactococcus lactis (IBL) strategy is developed to enhance the effectiveness of in situ vaccination with the immunomodulators. The intratumoral delivery of OX40 agonist and resiquimod-modified Lactococcus lactis (OR@Lac) facilitates local retention and persistent dispersion of immunomodulators, and dramatically modulates the key components of anti-tumor immune response. This novel vaccine activated dendritic cells and cytotoxic T lymphocytes in the tumor and tumor-draining lymph nodes, and ultimately significantly inhibited tumor growth and prolonged the survival rate of tumor-bearing mice. The combination of OR@Lac and ibrutinib, a myeloid-derived suppressor cell inhibitor, significantly alleviated or even completely inhibited tumor growth in tumor-bearing mice. In conclusion, IBL is a promising in situ tumor vaccine approach for clinical application and provides an inspiration for the delivery of other drugs.
RESUMEN
Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is one of the most frequent oncogenes. However, there are limited treatment options due to its intracellular expression. To address this, we developed a novel bispecific T-cell engager (BiTE) antibody targeting HLA-A2/KRAS G12V complex and CD3 (HLA-G12V/CD3 BiTE). We examined its specific binding to tumor cells and T cells, as well as its anti-tumor effects in vivo. HLA-G12V/CD3 BiTE was expressed in Escherichia coli and its binding affinities to CD3 and HLA-A2/KRAS G12V were measured by flow cytometry, along with T-cell activation. In a xenograft pancreatic tumor model, the HLA-G12V/CD3 BiTE's anti-tumor effects were assessed through tumor growth, survival time, and safety. Our results demonstrated specific binding of HLA-G12V/CD3 BiTE to tumor cells with an HLA-A2/KRAS G12V mutation and T cells. The HLA-G12V/CD3 BiTE also activated T-cells in the presence of tumor cells in vitro. HLA-G12V/CD3 BiTE in vivo testing showed delayed tumor growth without severe toxicity to major organs and prolonged mouse survival. This study highlights the potential of constructing BiTEs recognizing an HLA-peptide complex and providing a novel therapy for cancer treatment targeting the intracellular tumor antigen.
Asunto(s)
Anticuerpos Biespecíficos , Complejo CD3 , Proteínas Proto-Oncogénicas p21(ras) , Linfocitos T , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Humanos , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Ratones , Complejo CD3/inmunología , Complejo CD3/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/genética , FemeninoRESUMEN
The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.
Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Receptores Quiméricos de Antígenos/inmunología , Humanos , Animales , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Neoplasias/inmunología , Ratones , Receptores ErbB/metabolismo , Linfocitos T/inmunología , FemeninoRESUMEN
Background: Pancreatic adenocarcinoma carries a grim prognosis, and there are few recognized effective second-line treatment strategies. We attempted to evaluate the efficacy and safety of a combination of S-1, sintilimab, and anlotinib as a second-line treatment in pancreatic cancer patients with liver metastasis. Methods: Pancreatic cancer patients with liver metastases were recruited. S-1 was administered orally at 25 mg/m2 bid, anlotinib was administered orally at 12 mg qd from day 1 to day 14, and sintilimab was administered intravenously at 200 mg on day 1. This method was repeated every 21 days, and the therapeutic effect was evaluated every 3 cycles. The primary outcome was the objective response rate (ORR). Results: Overall, 23 patients were enrolled in this study of whom 19 patients had objective efficacy evaluation. The ORR was 10.5% (95% CI 0.4%-25.7%) in the evaluable population. The progression-free survival (PFS) was 3.53 (95% CI 2.50-7.50) months, and the overall survival (mOS) was 8.53 (95% CI 4.97-14.20) months. Grade 3 adverse events were 26.1%, and no grade 4 or above adverse events occurred. High-throughput sequencing was performed on the tumor tissues of 16 patients; patients with HRD-H (n = 10) had shorter PFS than those with HRD-L (n = 6) (2.43 vs. 5.45 months; P = 0.043), but there was no significant difference in OS between the two groups (4.43 vs. 9.35 months; P = 0.11). Conclusions: This study suggests the advantage of S-1 combined with sintilimab and anlotinib in extending OS as a second-line therapy in pancreatic cancer patients with liver metastasis. Clinical Trial Registration: ChiCTR2000030659.
Asunto(s)
Adenocarcinoma , Anticuerpos Monoclonales Humanizados , Indoles , Neoplasias Hepáticas , Neoplasias Pancreáticas , Quinolinas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológicoRESUMEN
This is a phase II study of PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with locally advanced or borderline resectable pancreatic cancer (LAPC or BRPC, respectively). Twenty-nine patients are enrolled in the study. The objective response rate (ORR) is 60%, and the R0 resection rate is 90% (9/10). The 12-month progression-free survival (PFS) rate and 12-month overall survival (OS) rate are 64% and 72%, respectively. Grade 3 or higher adverse events are anemia (8%), thrombocytopenia (8%), and jaundice (8%). Circulating tumor DNA analysis reveals that patients with a >50% decline in maximal somatic variant allelic frequency (maxVAF) between the first clinical evaluation and baseline have a longer survival outcome and a higher response rate and surgical rate than those who are not. PD-1 blockade plus chemoradiotherapy as preoperative therapy displays promising antitumor activity, and multiomics potential predictive biomarkers are identified and warrant further verification.
Asunto(s)
Neoplasias Pancreáticas , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamiento farmacológico , Terapia Neoadyuvante , Quimioradioterapia , Supervivencia sin ProgresiónRESUMEN
Cancer vaccines have had some success in the past decade. Based on in-depth analysis of tumor antigen genomics, many therapeutic vaccines have already entered clinical trials for multiple cancers, including melanoma, lung cancer, and head and neck squamous cell carcinoma, which have demonstrated impressive tumor immunogenicity and antitumor activity. Recently, vaccines based on self-assembled nanoparticles are being actively developed as cancer treatment, and their feasibility has been confirmed in both mice and humans. In this review, we summarize recent therapeutic cancer vaccines based on self-assembled nanoparticles. We describe the basic ingredients for self-assembled nanoparticles, and how they enhance vaccine immunogenicity. We also discuss the novel design method for self-assembled nanoparticles that pose as a promising delivery platform for cancer vaccines, and the potential in combination with multiple therapeutic approaches.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias Pulmonares , Melanoma , Nanopartículas , Humanos , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Antígenos de NeoplasiasRESUMEN
Pancreatic cancer is among the most lethal malignant neoplasms, and few patients with pancreatic cancer benefit from immunotherapy. We retrospectively analyzed advanced pancreatic cancer patients who received PD-1 inhibitor-based combination therapies during 2019-2021 in our institution. The clinical characteristics and peripheral blood inflammatory markers (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR], and lactate dehydrogenase [LDH]) were collected at baseline. Chi-squared and Fisher's exact tests were used to evaluate relationships between the above parameters and tumor response. Cox regression analyses were employed to assess the effects of baseline factors on patients' survival and immune-related adverse events (irAEs). Overall, 67 patients who received at least two cycles of PD-1 inhibitor were considered evaluable. A lower NLR was independent predictor for objective response rate (38.1% vs. 15.2%, P = .037) and disease control rate (81.0% vs. 52.2%, P = .032). In our study population, patients with lower LDH had superior progression-free survival (PFS) and overall survival(OS) (mPFS, 5.4 vs. 2.8 months, P < .001; mOS, 13.3 vs. 3.6 months, P < .001). Liver metastasis was verified to be a negative prognostic factor for PFS (2.4 vs. 7.8 months, P < .001) and OS (5.7 vs. 18.0 months, P < .001). The most common irAEs were hypothyroidism (13.4%) and rash (10.5%). Our study demonstrated that the pretreatment inflammatory markers were independent predictors for tumor response, and the baseline LDH level and liver metastasis were potential prognostic markers of survival in patients with pancreatic cancer treated with PD-1 inhibitors.
Asunto(s)
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Pronóstico , Estudios Retrospectivos , Recuento de Linfocitos , Recuento de Plaquetas , Biomarcadores , Linfocitos , Neoplasias Pancreáticas/tratamiento farmacológico , Neutrófilos , Biomarcadores de Tumor , Neoplasias PancreáticasRESUMEN
Previous clinical studies had not shown expected results in advanced pancreatic cancer (APC) with single-agent checkpoint inhibitors. Until the present day, little is known about their performance in real-world settings. So, in this study, we investigate the ICIs' efficacy and safety in Chinese APC patients. Patients with APC who received ICIs between November 2018 to June 2021 were enrolled in this retrospective study. The efficacy end points included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR) and adverse events (AEs). This study included 104 patients and the median OS (mOS) and median PFS (mPFS) were 9.1 and 5.4 months, respectively. In the subgroup analyses, the mOS was longer for patients receiving combined radiotherapy than for those that didn't (13.8 vs 7.0 months, p < .001), whereas the mPFS was also longer, and the ORR and DCR were higher. Specifically, the mOS was longer for patients who had received a combination of chemotherapy than for those combined with targeted therapy (11.6 vs 5.6 months, p = .002), with the mPFS being also longer. ICIs as a first-line treatment could resulted to better survival. The mOS was longer for patients with a high TMB compared to those with low (19.3 vs 7.2 months, p = .004), whereas AEs were considered to be tolerable. The combination therapy of ICIs was proved to be safe and effective for treating APC, especially the combination of chemotherapy and radiotherapy, which would benefit from additional prospective studies.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pancreáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Estudios Prospectivos , Pueblos del Este de Asia , Estudios Retrospectivos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias PancreáticasRESUMEN
Background: Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignancy with a low resection rate. Chemotherapy and radiotherapy (RT) are the main treatment approaches for patients with advanced pancreatic cancer, and neoadjuvant chemoradiotherapy is considered a promising strategy to increase the resection rate. Recently, immune checkpoint inhibitor (ICI) therapy has shown remarkable efficacy in several cancers. Therefore, the combination of ICI, chemotherapy, and concurrent radiotherapy is promising for patients with potentially resectable pancreatic cancer, mainly referring to locally advanced (LAPC) and borderline resectable pancreatic cancer (BRPC), to increase the chances of conversion to surgical resectability and prolong survival. This study aims to introduce the design of a clinical trial. Methods: This is an open-label, single-arm, and single-center phase II trial. Patients with pathologically and radiographically confirmed LAPC or BRPC without prior anti-cancer treatment or severe morbidities will be enrolled. All patients will receive induction therapy and will be further evaluated by the Multiple Disciplinary Team (MDT) for the possibility of surgery. The induction therapy consists of up to four cycles of gemcitabine 1,000 mg/m2 and nab-paclitaxel 125 mg/m2 via intravenous (IV) infusion on days 1 and 8, along with tislelizumab (a PD-1 monoclonal antibody) 200 mg administered through IV infusion on day 1 every 3 weeks, concurrently with stereotactic body radiation therapy (SBRT) during the third cycle of treatment. After surgery, patients without progression will receive another two to four cycles of adjuvant therapy with gemcitabine, nab-paclitaxel, and tislelizumab. The primary objectives are objective response rate (ORR) and the R0 resection rate. The secondary objectives are median overall survival (mOS), median progression free survival (mPFS), disease control rate (DCR), pathological grade of tumor tissue after therapy, and adverse reactions. Besides, we expect to explore the value of circulating tumor DNA (ctDNA) in predicting tumor response to induction therapy and survival outcome of patients. Discussion: This is a protocol for a clinical trial that attempts to evaluate the safety and efficacy of the combination of anti-PD-1 antibody plus chemotherapy and radiotherapy as the induction therapy for LAPC and BRPC. The results of this phase II study will provide evidence for the clinical practice of this modality. Clinical Trial Registration: http://www.chictr.org.cn/edit.aspx?pid=53720&htm=4, identifier ChiCTR2000032955.
RESUMEN
Purpose: Although mutational analysis of pancreatic cancer has provided valuable clinical information, it has not significantly changed treatment prospects. The purpose of this study is to further investigate molecular alterations in locally advanced pancreatic cancer and identify predictors of the efficacy of nab-paclitaxel plus gemcitabine (AG) chemotherapy. Experimental design: Tumor samples from 118 pancreatic cancer patients who received AG chemotherapy as first-line treatment were sequenced and genomic profile was generated. Molecular alterations and the involved signaling pathways were analyzed. Genes with a significant difference in mutation frequency between primary and metastatic tumors were identified, and prognostic-related mutant genes were screened using SPSS version 22.0. Results: The most common altered genes in the patients were KRAS (94.9%), TP53 (81.4%), CDKN2A (36.4%), and SMAD4 (22.9%). The mutational frequencies of CDKN2B (14.8% vs. 0%, p = 0.001), FAT3 (7.4% vs. 0%, p = 0.041), MTAP (13% vs. 1.6%, p = 0.023), and SMAD4 (31.4% vs. 15.6%, p = 0.049) in metastatic tumors were significantly higher than that in primary tumors. TP35 and KRAS mutations were significantly correlated with objective response rate, while EPHA7, RNF43, and HMGA2 mutations were significantly correlated with disease control rate. Additionally, patients with TGFR2B, FGF23, EPHA7, SMARCA4, CARD11, ADGRA2, CCNE1, and ACVR2A alterations had a worse overall survival. Further, EPHA7, CARD11, NOTCH1, GATA6, ACVR2A, and HMGA2 mutations indicated undesirable progression-free survival. Conclusions: CDKN2B, FAT3, MTAP, and SMAD4 may be biomarkers that distinguish primary tumors from metastases. EPHA7 mutation may serve as a prognostic biomarker to predict the treatment efficacy of AG chemotherapy in locally advanced pancreatic cancer.
RESUMEN
Immune monotherapy does not appear to work in patients with pancreatic cancer so far. We are conducting a clinical trial that combines programmed cell death protein-1 (PD-1) inhibitor with chemotherapy and concurrent radiotherapy as induction therapy for patients with locally advanced pancreatic cancer (LAPC) and borderline resectable pancreatic cancer (BRPC). Here, we report a case with a pathologic complete response (pCR) and no postoperative complications after the induction therapy. The patient received four cycles of induction therapy and achieved a partial response (PR) with a significant decline of tumor marker carbohydrate antigen 19-9 (CA19-9). Also, peripheral blood samples were collected during the treatment to investigate serial circulating tumor DNA (ctDNA) dynamic changes in predicting the tumor response and outcomes in patients. Our result suggested that PD-1 blockade plus chemotherapy and concurrent radiotherapy is a promising mode as induction therapy for patients with potentially resectable pancreatic cancer. In this case, serial ctDNA alterations accurately provide a comprehensive outlook of the tumor status and monitor the response to the therapy, as validated by standard imaging.
RESUMEN
Personal neoantigen vaccines are considered to be effective methods for inducing, amplifying and diversifying antitumor T cell responses. We recently conducted a clinical study that combined neoantigen nanovaccine with anti-PD-1 antibody. Here, we reported a case with a clear beneficial outcome from this treatment. We established a process that includes comprehensive identification of individual mutations, computational prediction of new epitopes, and design and manufacture of unique nanovaccines for this patient. Nanovaccine started after a relapse in third-line treatment. We assessed the patient's clinical outcome and circulating immune response. In this advanced pancreatic cancer patient, the OS associated with the vaccine treatment was 10.5 months. A peptide-specific T-cell response against 9 of the 12 vaccine peptides could be detected sequentially. Robust neoantigen-specific T cell responses were also detected by IFN-γ ELISPOT and intracellular cytokine staining. In conclusion, sustained functional neoantigen-specific T cell therapy combined with immune checkpoint targeting may be well suited to help control progressive metastatic pancreatic cancer.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias Pancreáticas , Antígenos de Neoplasias , Vacunas contra el Cáncer/uso terapéutico , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Péptidos , Linfocitos T , Neoplasias PancreáticasRESUMEN
Background and Purpose: A phase 2 study LAPACT indicated nab-paclitaxel plus gemcitabine (AG) improved outcomes of patients with locally advanced pancreatic cancer (LAPC). Conventional radiotherapy failed to show benefit, indicating high dose to volume with high risk of recurrence is needed. The high dose can be delivered through hypofractionated tomotherapy with simultaneous integrated boost (SIB). However, there is a lack of such prospective trials and more data are needed to validate the role of AG plus hypofractionated tomotherapy with SIB in patients with LAPC. Materials and Methods: Patients with LAPC receiving AG plus tomotherapy at the Nanjing Drum Tower Hospital between 2018 and 2021 were retrospectively analyzed. The treatment was scheduled as follows: nab-paclitaxel 125 mg/m2 plus gemcitabine 1,000 mg/m2 on days 1 and 8 every three weeks for at least two cycles, followed by hypofractionated tomotherapy with SIB (high dose field: 50 Gy/10 fractions, the remainder: 30 Gy/10 fractions). Then patients were given AG until intolerance or disease progression. Results: Overall, 22 patients completing the chemoradiotherapy were included. The median follow-up was 15.2 months. After the chemoradiotherapy, 5 patients achieved a partial response (PR), 15 had a stable disease (SD), and another 2 patients were with progressive disease (PD). The median progression-free survival (PFS) and overall survival (OS) were 12.8 months (95% confidence interval [CI] 4.3-21.3 months) and 16.3 months (95% CI 10.9-21.6 months), respectively. The optimal carbohydrate antigen (CA) 19-9 response and chemotherapy cycles ≥6 were correlated with favorable PFS and OS. The most common recurrent pattern was peritoneal dissemination (22.7%) and the locoregional recurrence rate was relatively low (4.5%). Treatments were well-tolerated. The most common grade ≥3 adverse event was thrombocytopenia (13.6%). Conclusion: This study demonstrated the feasibility of AG followed by hypofractionated tomotherapy with SIB in patients with LAPC. The hypofractionated tomotherapy with SIB was safe and showed high local control rate. Further study with a larger population to validate our data is underway.
RESUMEN
Large-scale and widely dispersed distributed energy resource (DER) can be gathered by a virtual power plant (VPP) in a given area, and its parameters can be combined into a single external operation profile. Each distributed energy source in the VPP has a complete backup of the critical information for the entire network because it is a node of blockchain. The distribution network can be accessed by DER freely and adaptable under the scientific management of the VPP, and it can offer the system high-reliability, high-quality, and high-security power services. An energy blockchain network model based on particle swarm optimization (PSO) to optimise the neural network is proposed in this paper as a solution to the issues with the current VPP models. This will enable distributed dispatching of the VPP and reasonable load distribution among units. According to the simulation results, this algorithm's error is minimal and its accuracy can reach 94.98 percent. This model can more accurately capture demand-side real-time information, which benefits VPP's stable scheduling with a welcoming environment and transparent information. It also enhances the system's data security and storage security. This system can successfully address the issues of subject-to-subject mistrust and high information interaction costs in the VPP.
RESUMEN
BACKGROUND: To date, chemotherapy remains the only effective treatment of unresectable pancreatic adenocarcinoma. In the past few years, the interest in immunological anticancer therapy rises sharply. AGIG is a novel chemo-immunotherapy regimen that combines nab-paclitaxel + gemcitabine chemotherapy with sequential recombinant interleukin-2 (IL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF) therapy. We conducted a single-arm prospective phase II study to determine the efficacy and safety of the first-line treatment of advanced pancreatic cancer with AGIG regimen. METHODS: Nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) were administered intravenously to all patients on days 1 and 8 triweekly, interleukin-2 (1000000U) and GM-CSF (100 µg) were administered subcutaneously on days 3-5 after chemotherapy. The primary end point was ORR by the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary end points included safety profile, progression-free survival (PFS), overall survival (OS). Patients' conditions along with the efficacy and safety were assessed every two cycles. RESULTS: Between 11/2018 and 01/2020, sixty-four patients were enrolled. In the sixty-four evaluable patients, the disease control rate (DCR) and overall response rate (ORR) were 76.6% and 43.75%, respectively. The median follow-up time was 12.1 (range 7.1-22.4) months. The median PFS was 5.7 (range 1.63-15.8) months. The median OS was 14.2 (range 2.9-22.0) months. The most common adverse event was fever (75%). The incidence of III/IV grade neutropenia was 4.69%. In subgroup analyses, we found that eosinophil count in the blood elevated three times higher than baseline level predicted a longer survival. CONCLUSIONS: The AGIG chemo-immunotherapy regimen has presented favorable ORR, OS, and manageable toxicities as first-line therapeutic strategy of advanced pancreatic cancer treatment. This regimen may be a novel reliable therapeutic option for patients with preserved performance status. The improvement of treatment efficiency may be related to the activation of non-specific immune response. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/. identifier NCT03768687.
RESUMEN
OBJECTIVES: Interleukin-6 (IL-6) is critical for the development of non-small-cell lung cancer (NSCLC). Recently, we identified T-cell immunoglobulin domain and mucin domain 4 (TIM-4) as a new pro-growth player in NSCLC progression. However, the role of TIM-4 in IL-6-promoted NSCLC migration, invasion and epithelial-to-mesenchymal transition (EMT) remains unclear. MATERIALS AND METHODS: Expressions of TIM-4 and IL-6 were both evaluated by immunohistochemical staining in NSCLC tissues. Real-time quantitative PCR (qPCR), Western blot, flow cytometry and RT-PCR were performed to detect TIM-4 expression in NSCLC cells with IL-6 stimulation. The roles of TIM-4 in IL-6 promoting migration and invasion of NSCLC were detected by transwell assay. EMT-related markers were analysed by qPCR and Western blot in vitro, and metastasis was evaluated in BALB/c nude mice using lung cancer metastasis mouse model in vivo. RESULTS: High IL-6 expression was identified as an independent predictive factor for TIM-4 expression in NSCLC tissues. NSCLC patients with TIM-4 and IL-6 double high expression showed the worst prognosis. IL-6 promoted TIM-4 expression in NSCLC cells depending on NF-κB signal pathway. Both TIM-4 and IL-6 promoted migration, invasion and EMT of NSCLC cells. Interestingly, TIM-4 knockdown reversed the role of IL-6 in NSCLC and IL-6 promoted metastasis of NSCLC by up-regulating TIM-4 via NF-κB. CONCLUSIONS: TIM-4 involves in IL-6 promoted migration, invasion and EMT of NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Interleucina-6/inmunología , Neoplasias Pulmonares/inmunología , Proteínas de la Membrana/genética , FN-kappa B/inmunología , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-6/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Proteínas de la Membrana/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/inmunología , Invasividad Neoplásica/patología , Regulación hacia ArribaRESUMEN
Serine protease inhibitor Kazal type 1 (SPINK1) plays a role in protecting the pancreas against premature activation of trypsinogen and is involved in cancer progression. SPINK1 promoted LAC cells growth, migration, and invasion. Mechanistically, we found that SPINK1 promoted LAC cells migration and invasion via up-regulating matrix metalloproteinase 12 (MMP12). We observed that SPINK1 expression was only up-regulated in lung adenocarcinoma (LAC) tissues, and was an independent prognostic factor for poor survival. Our results indicate that SPINK1 might be a potential biomarker for LAC that promotes progression by MMP12. [BMB Reports 2018; 51(12): 648-653].
Asunto(s)
Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/patología , Inhibidor de Tripsina Pancreática de Kazal/metabolismo , Adenocarcinoma del Pulmón/mortalidad , Animales , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Modelos de Riesgos Proporcionales , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Estudios Retrospectivos , Tasa de Supervivencia , Inhibidor de Tripsina Pancreática de Kazal/química , Inhibidor de Tripsina Pancreática de Kazal/genética , Regulación hacia ArribaRESUMEN
It is known that dysregulation of the immune system is closely related to the development of lung cancer and that CD8+T lymphocytes play a critical role in antitumor immunity. We analyzed the percentage of CD3+CD8+ T cells in peripheral blood, and expressions of the activated molecules, perforin, CD95, CD28, HLA-DR and CD38 in circulating CD3+CD8+ T cells from 68 lung cancer cases with stage Iâ¼II and 61 lung cancer cases with stage IIIâ¼IV by flow cytometry. 61 lung cancer cases with stage IIIâ¼IV were followed up for more than 6 months and survival time was recorded. The percentages of perforin+ cells, CD95+ cells and CD38+ cells in fresh CD3+CD8+ T lymphocytes of stage IIIâ¼IV group were lower than those of stage Iâ¼II group (p=0.021; p=0.043; p=0.036). And an increased percentage of CD3+CD8+perforin+ cells was shown to have a positive effect on the survival time in stage IIIâ¼IV lung cancer patients (p=0.043). Advanced lung cancer patients have characteristics of impairment in the cytotoxicity of circulating CD3+CD8+ T lymphocytes and perforin expression in circulating CD3+CD8+ T cells might be used as a prognostic biomarker for the advanced lung cancer.
Asunto(s)
Antígenos CD/sangre , Linfocitos T CD8-positivos/metabolismo , Neoplasias Pulmonares/patología , Perforina/sangre , ADP-Ribosil Ciclasa 1/sangre , ADP-Ribosil Ciclasa 1/metabolismo , Anciano , Antígenos CD/metabolismo , Antígenos CD28/sangre , Antígenos CD28/metabolismo , Complejo CD3/metabolismo , Linfocitos T CD8-positivos/patología , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Masculino , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Perforina/inmunología , Receptor fas/sangre , Receptor fas/metabolismoRESUMEN
T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to play an important role in mediating NK-cell function in human diseases. However, the relationship between Tim-3 expression in natural killer (NK) cells and human lung adenocarcinoma remains unclear. We therefore investigated the expression of Tim-3 in NK cells and explored the effect of Tim-3 blockade on NK cell-mediated activity in human lung adenocarcinoma. Upregulated expression of Tim-3 on CD3-CD56+ cells (P<0.05) and CD3-CD56(dim) cells (P<0.05) of patients with lung adenocarcinoma was detected by flow cytometry. Moreover, Tim-3 expression in CD3-CD56+ NK cells was higher in patients with lung adenocarcinoma with lymph node metastasis (LNM) (P<0.05) or with tumor stage T3-T4 (P<0.05). Tim-3 expression in CD56(dim) NK-cell subset was higher in patients with tumor size ≥3cm (P<0.05), or LNM (P<0.05) or with tumor stage T3-T4 (P<0.05). Further analysis showed that higher expressions of Tim-3 on both CD3-CD56+ NK cells and CD56(dim) NK-cell subset were independently correlated with shorter overall survival of patients with lung adenocarcinoma (log-rank test, P=0.0418, 0.0406, respectively). Importantly, blockade of Tim-3 signaling with anti-Tim-3 antibodies resulted in the increased cytotoxicity and IFN-γ production of peripheral NK cells from patients with lung adenocarcinoma. Our data indicate that Tim-3 expression in NK cells can function as a prognostic biomarker in human lung adenocarcinoma and support that Tim-3 could be a new target for an immunotherapeutic strategy.
Asunto(s)
Adenocarcinoma/metabolismo , Regulación de la Expresión Génica/fisiología , Células Asesinas Naturales/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Anticuerpos/inmunología , Complejo CD3/genética , Complejo CD3/metabolismo , Antígeno CD56/genética , Antígeno CD56/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Técnicas de Cocultivo , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Persona de Mediana Edad , Pronóstico , Regulación hacia ArribaRESUMEN
Monocytes and associated cytokines have been shown to be involved in the pathogenesis of ankylosing spondylitis (AS). T cell immunoglobulin and mucin domain 4 (Tim-4) was identified on monocytes/macrophages and dentritic cells (DCs) and plays important roles in regulating the activities of macrophages and DCs. The current study investigated the association between Tim-4 expression and AS. Our results showed that Tim-4 expression on monocytes and Tim-4 level in plasma were highly increased in AS patients than in controls. Furthermore, TNF-α production and bath ankylosing spondylitis disease activity index (BASDAI) have positive relationships with Tim-4 expression in AS patients. High expression of Tim-4 was thought to contribute to the pathogenesis and an underlying mechanism of AS.