RESUMEN
Ecosystem services (ESs) are essential for human well-being and are relevant to the region's sustainable development. Most studies have emphasized the importance of high ecosystem services areas for entire regions. However, some locations with particular contributions to a region's ecosystem services are still overlooked. Using the InVEST model, this study analyzed three ESs: annual water yield (WY), carbon storage (CS), and soil conservation (SC) in the farmland of the Huang-Huai-Hai Plain of China (HHHP) from 2005 to 2019. Combining climate regulation (NDVI) and food production (FP), this research calculated the city level of the diversity of ecosystem services supply (alpha-multifunctionality) and the unique contribution to the region in each city (beta-multifunctionality) from 2005 to 2019. The alpha-multifunctionality combines the number of ecosystem services and their supplies of ecosystem services. At the same time, the beta-multifunctionality assesses the average dissimilarity between the city and all other cities within that region. Furthermore, this study used Spearman correlation and self-organizing map (SOM) to analyze the relationships between these five ecosystem services and identify ecosystem service bundles. Finally, this study used random forests to analyze drivers of ecosystem service multifunctionality. Our results showed that food production in the Huang-Huai-Hai Plain increased significantly by 37.20% over time, annual water yield decreased significantly by 29.59%, and climate regulation decreased significantly by 6.09%. This may be because the Huang-Huai-Hai Plain mainly shifted from monoculture to crop rotation, and the increase in crops required more irrigation, which led to a significant decline in water yield. Furthermore, the area of grain crops in the HHHP was reduced in 2019 compared to 2005, which explains the significant decline in climate regulation. SOM found that cities with a higher beta-multifunctionality were mainly concentrated in the northern and southwest parts of HHHP. Bundles with a high alpha-multifunctionality were mainly in the southern and southeast parts of the HHHP. In addition, this research showed that farmers' per capita disposable income was the most important driver of ecosystem service multifunctionality, followed by annual average precipitation and temperature. In conclusion, this study suggests that policymakers should strengthen the protection of some high ecological value but low economic value farmlands, which are crucial for regional ecological security. Meanwhile, policymakers should introduce strict ecological protection policies for farmland to reduce the decline of ecological services caused by farmers' pursuit of economic income.
RESUMEN
Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization. This process includes RNA absorption via a paper strip, RNA amplification using recombinase polymerase amplification (RPA), and a lateral flow assay for signal readout. The on-chip detection of MNV-1 was completed within 35 min, demonstrating 100% specificity to MNV-1 in our settings. The detection limit of this microfluidic device for MNV-1 was 200 PFU/mL, comparable to the in-tube RPA reaction. It also successfully detected MNV-1 in lettuce and raspberries at concentrations of 170 PFU/g and 230 PFU/g, respectively, without requiring extra concentration steps. This device demonstrates high compatibility with isothermal nucleic acid amplification and holds significant potential for detecting foodborne viruses in agri-food products in remote and resource-limited settings. IMPORTANCE: HuNoV belongs to the family of Caliciviridae and is a leading cause of acute gastroenteritis that can be transmitted through contaminated foods. HuNoV causes around one out of five cases of acute gastroenteritis that lead to diarrhea and vomiting, placing a substantial burden on the healthcare system worldwide. HuNoV outbreaks can occur when food is contaminated at the source (e.g., wild mussels exposed to polluted water), on farms (e.g., during crop cultivation, harvesting, or livestock handling), during packaging, or at catered events. The research outcomes of this study expand the approaches of HuNoV testing, adding value to the framework for routine testing of food products. This microfluidic device can facilitate the monitoring of HuNoV outbreaks, reduce the economic loss of the agri-food industry, and enhance food safety.
RESUMEN
Total phenolic content (TPC) and antioxidant capacity of maple syrup were determined using Raman spectroscopy and deep learning. TPC was determined by Folin-Ciocalteu assay, while the antioxidant capacity was measured by 2,2-diphenyl-1picrylhydrazyl (DPPH) assay, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay. A total of 360 spectra were collected from 36 maple syrup samples of different colours (dark, amber, light) by both benchtop and portable Raman spectrometers. These spectra were used to establish predictive models for assessing the antioxidant profiles of maple syrup. Deep learning models developed along with portable Raman spectroscopy exhibited comparable predictive performance to those developed along with benchtop Raman spectroscopy. Base on the spectral dataset collected using portable Raman spectroscopy, the developed deep learning models exhibited low RMSEs (root mean square errors, 7.2-17.9 % of mean reference values), low MAEs (mean absolute errors, 5.2-13.1 % of mean reference values) and high R2 values (>0.88). The results showed a great goodness of fit and accuracy for predicting the antioxidant profiles of maple syrup, indicating the potential of using portable Raman spectrometer for on-site analysis of antioxidant profiles of maple syrup.
RESUMEN
The total phenolic content (TPC) and antioxidant capacity (TAC) of haskap berries cultivated in various locations across Alberta were analyzed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The Folin-Ciocalteu assay was used to determine TPC, while TAC was quantified by 2,2-diphenyl-1-picrylhydrazl radicals (DPPH) assay and oxygen radical absorbance capacity (ORAC) assay. Three tenfold cross-validated partial least-squares regression (PLSR) models and three fivefold cross-validated deep learning models were developed separately based on FT-IR spectra collected from 22 haskap berry samples and their corresponding reference values determined through Folin-Ciocalteu, DPPH, and ORAC assays. The deep learning models (R2 = 0.95, 0.93, and 0.90 for Folin-Ciocalteu, DPPH, and ORAC assays, respectively) demonstrated better prediction capability compared to the PLSR models (R2 = 0.74, 0.72, and 0.66 for Folin-Ciocalteu, DPPH, and ORAC assays, respectively). In addition, PLS loading plots indicated that phenolic contents and polysaccharides in haskap berries could contribute to their antioxidant capacity. Using ATR-FTIR to estimate the TPC and TAC of fruits offers a rapid alternative to the conventional chemical assays.
RESUMEN
Integration of machine learning (ML) technologies into the realm of smart food safety represents a rapidly evolving field with significant potential to transform the management and assurance of food quality and safety. This chapter will discuss the capabilities of ML across different segments of the food supply chain, encompassing pre-harvest agricultural activities to post-harvest processes and delivery to the consumers. Three specific examples of applying cutting-edge ML to advance food science are detailed in this chapter, including its use to improve beer flavor, using natural language processing to predict food safety incidents, and leveraging social media to detect foodborne disease outbreaks. Despite advances in both theory and practice, application of ML to smart food safety still suffers from issues such as data availability, model reliability, and transparency. Solving these problems can help realize the full potential of ML in food safety. Development of ML in smart food safety is also driven by social and industry impacts. The improvement and implementation of legal policies brings both opportunities and challenges. The future of smart food safety lies in the strategic implementation of ML technologies, navigating social and industry impacts, and adapting to regulatory changes in the AI era.
Asunto(s)
Inocuidad de los Alimentos , Aprendizaje Automático , Humanos , Enfermedades Transmitidas por los Alimentos/prevención & controlRESUMEN
The synthesis methods, crystal structures, and properties of anhydrous monazite and xenotime (REPO4) crystalline materials are summarized within this review. For both monazite and xenotime, currently available Inorganic Crystal Structure Database data were used to study the effects of incorporating different RE cations on the unit cell parameters, cell volumes, densities, and bond lengths. Domains of monazite-type and xenotime-type structures and other AXO4 compounds (A = RE; X = P, As, V) are discussed with respect to cation sizes. Reported chemical and radiation durabilities are summarized. Different synthesis conditions and chemicals used for single crystals and polycrystalline powders, as well as first-principles calculations of the structures and thermophysical properties of these minerals are also provided.
RESUMEN
Echocardiography-guided percutaneous intramyocardial septal radiofrequency ablation (PIMSRA, Liwen procedure) is a novel treatment option for hypertrophic obstructive cardiomyopathy (HOCM). The safety and feasibility of using this procedure for cryoablation are unknown. We aimed to investigate the feasibility and safety of echocardiography-guided percutaneous intramyocardial septal cryoablation (PIMSCA) for septal thickness reduction in a canine model. Eight canines underwent PIMSCA, and had electrocardiography, echocardiography(ECG), myocardial contrast echocardiography (MCE), serological and pathological examinations during the preoperative, immediate postoperative, and 6-month follow-up. All eight canines underwent successful cryoablation and continued to be in sinus rhythm during ablation and without malignant arrhythmias. MCE showed that the ablation area had decreased myocardial perfusion after the procedure. Troponin I levels were significantly elevated [0.010 (0.005, 0.297) ng/mL vs. 3.122 (1.152, 7.990) ng/mL, p < 0.05)]. At 6-month follow-up after the procedure, all animals were alive, with thinning of the interventricular septum (7.26 ± 0.52 mm vs. 3.86 ± 0.29 mm, p < 0.05). Echocardiography showed no significant decrease in the left ventricular ejection fractions (LVEF) (54.32 ± 2.93 % vs. 54.70 ± 2.47 %, p > 0.05) or changes by pulse-wave Doppler E/A (1.17 ± 0.43 vs. 1.07 ± 0.43, p > 0.05), E/e' (8.09 ± 1.49 vs. 10.05 ± 2.68, p > 0.05). Pathological findings proved the effectiveness of cryoablation in myocardial tissues. We observed pericardial effusions and premature ventricular complexes (PVCs) associated with the procedure. Our findings provided preliminary evidence of the safety and feasibility of PIMSCA in reducing interventricular septum, which provides a potentially new treatment option for HOCM.
Asunto(s)
Cardiomiopatía Hipertrófica , Criocirugía , Ecocardiografía , Estudios de Factibilidad , Tabiques Cardíacos , Animales , Perros , Criocirugía/métodos , Cardiomiopatía Hipertrófica/cirugía , Tabiques Cardíacos/cirugía , Electrocardiografía , Modelos Animales de Enfermedad , Masculino , Femenino , Estudios de Seguimiento , Troponina I/metabolismo , Troponina I/sangreRESUMEN
Immune thrombocytopenia (ITP) is an autoimmune disease caused by the loss of immune tolerance to platelet autoantigens, resulting in reduced platelet production and increased platelet destruction. Impaired megakaryocyte differentiation and maturation is a key factor in the pathogenesis and treatment of ITP. Sarcandra glabra, a plant of the Chloranthaceae family, is commonly used in clinical practice to treat ITP, and daucosterol (Dau) is one of its active ingredients. However, whether Dau can treat ITP and the key mechanism of its effect are still unclear. In this study, we found that Dau could effectively promote the differentiation and maturation of megakaryocytes and the formation of polyploidy in the megakaryocyte differentiation disorder model constructed by co-culturing Dami and HS-5 cells. In vivo experiments showed that Dau could not only increase the number of polyploidized megakaryocytes in the ITP rat model, but also promote the recovery of platelet count. In addition, through network pharmacology analysis, we speculated that the JAK2-STAT3 signaling pathway might be involved in the process of Dau promoting megakaryocyte differentiation. Western blot results showed that Dau inhibited the expression of P-JAK2 and P-STAT3. In summary, these results provide a basis for further studying the pharmacological mechanism of Dau in treating ITP.
Asunto(s)
Diferenciación Celular , Janus Quinasa 2 , Megacariocitos , Púrpura Trombocitopénica Idiopática , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Janus Quinasa 2/metabolismo , Megacariocitos/metabolismo , Megacariocitos/efectos de los fármacos , Megacariocitos/citología , Púrpura Trombocitopénica Idiopática/metabolismo , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/patología , Transducción de Señal/efectos de los fármacos , Sitoesteroles/farmacología , Factor de Transcripción STAT3/metabolismoRESUMEN
The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/µL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference. Moreover, this approach was employed to detect ASFV in porcine plasma. A broad linear detection range was observed, and the limit of detection in spiked porcine plasma was calculated to be as low as 42-85 copies/µL. Our results indicate that the developed paper platform exhibits the advantages of high sensitivity, excellent specificity, and low cost, making it promising for clinical applications in the field of DNA disease detection and suitable for popularization in low-resourced areas.
Asunto(s)
Virus de la Fiebre Porcina Africana , Técnicas Biosensibles , Sistemas CRISPR-Cas , Colorimetría , ADN Catalítico , G-Cuádruplex , Papel , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Colorimetría/métodos , Técnicas Biosensibles/métodos , ADN Catalítico/química , Animales , Sistemas CRISPR-Cas/genética , Porcinos , ADN Viral/análisis , ADN Viral/genética , Límite de DetecciónRESUMEN
Mycotoxins are secondary metabolites of certain moulds, prevalent in 60-80% of food crops and many processed products but challenging to eliminate. Consuming mycotoxin-contaminated food and feed can lead to various adverse effects on humans and livestock. Therefore, testing mycotoxin residue levels is critical to ensure food safety. Gold standard analytical methods rely on liquid chromatography coupled with optical detectors or mass spectrometers, which are high-cost with limited capacity. This study reported the successful development of a microfluidic "lab-on-a-chip" device to enrich and detect zearalenone in food samples based on the fluorescence quenching effect of quantum dots and selective affinity of molecularly imprinted polymers (MIPs). The dummy template and functional polymer were synthesized and characterized, and the detailed microfluidic chip design and optimization of the flow conditions in the enrichment module were discussed. The device achieved an enrichment factor of 9.6 (±0.5) in 10 min to quantify zearalenone spiked in food with high recoveries (91-105%) at 1-10 mg kg-1, covering the concerned residue levels in the regulations. Each sample-to-answer test took only 20 min, involving 3 min of manual operation and no advanced equipment. This microfluidic device was mostly reusable, with a replaceable detection module compatible with fluorescence measurement using a handheld fluorometer. To our best knowledge, the reported device was the first application of an MIP-based microfluidic sensor for detecting mycotoxin in real food samples, providing a novel, rapid, portable, and cost-effective tool for monitoring mycotoxin contamination for food safety and security.
Asunto(s)
Contaminación de Alimentos , Dispositivos Laboratorio en un Chip , Polímeros Impresos Molecularmente , Puntos Cuánticos , Zearalenona , Zearalenona/análisis , Puntos Cuánticos/química , Contaminación de Alimentos/análisis , Polímeros Impresos Molecularmente/química , Impresión Molecular , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Análisis de los Alimentos/instrumentaciónRESUMEN
Recent works have experimentally proven that metal matrix composites (MMCs) with network architecture present improved strength-ductility match. It is envisaged that the performance of architecturally designed composites is particularly sensitive to reinforcement strength. Here, reinforcing particles with various fracture strengths were introduced in numerical models of composites with network particle distribution. The results revealed that a low particle strength (1 GPa) led to early-stage failure and brittle fracture. Nevertheless, a high particle strength (5 GPa) delayed the failure behavior and led to ductile fracture at the SiC/Al-Al macro-interface areas. Therefore, the ultimate tensile strengths (UTS) of the network SiC/Al composites increased from 290 to 385 MPa, with rising particle strength from 1 to 5 GPa. Based on the composite property, different particle fracture threshold strengths existed for homogeneous (~2.7 GPa) and network (~3.7 GPa) composites. The higher threshold strength in network composites was related to the increased stress concentration induced by network architecture. Unfortunately, the real fracture strength of the commercial SiC particle is 1-2 GPa, implying that it is possible to select a high-strength particle necessary for efficient network architecture design.
RESUMEN
We reported the development of a smartphone-integrated microfluidic paper-based optosensing platform for in-situ detection and quantification of histamine in canned tuna. Molecularly imprinted polymers were synthesized via precipitation polymerization and utilized as dispersive solid phase extraction sorbent to selectively extract histamine from canned tuna. Carbon quantum dots functioning as a fluorescent probe were synthesized and introduced onto the microzones of the microfluidic paper device. This facilitated a noticeable fluorescence color change from dark red to vivid blue upon the addition of histamine. The change in fluorescence on the paper device was converted into specific RGB values using a portable UV light box combined with a smartphone. This assay achieved the limit of detection of 14.04 mg/kg with the linear range from 20 to 100 mg/kg of histamine in canned tuna. The entire molecular imprinting-microfluidic optosensing test could be completed in 45 min including sample preparation.
Asunto(s)
Histamina , Impresión Molecular , Teléfono Inteligente , Atún , Animales , Histamina/análisis , Contaminación de Alimentos/análisis , Papel , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos , Límite de DetecciónRESUMEN
INTRODUCTION: Calcium channel gene variations have been reported to be associated with hypertrophic cardiomyopathy (HCM) in family, but the relationship between calcium channel gene variations and HCM remains undefined in the population. METHODS: A total of 719 HCM unrelated patients were initially enrolled. Finally, 371 patients were identified based on inclusion and exclusion criteria, including 145 patients with gene negative, 28 patients with a single rare calcium channel gene variation (calcium gene variation), 162 patients with a single pathogenic/likely pathogenic sarcomere gene variation (sarcomere gene variation) and 36 patients with a single pathogenic/likely pathogenic sarcomere gene variation and a single rare calcium channel gene variation (double gene variations). Then the demographic, electrocardiographic, echocardiographic, and follow-up data were collected. RESULTS: Patients with double gene variations were at an earlier age and had more percent of family history of HCM, and had thicker walls, higher left ventricular outflow tract pressure gradient, more pathological Q waves, and more bundle branch blocks as compared with those with single sarcomere gene variation. During the follow-up period, patients with double gene variations had more primary endpoints than the other three groups (p = 0.0013). Multivariate analysis showed that double gene variations were the independent predictor of primary endpoint events in patients (HR: 4.82, 95% CI: 1.77-13.2; p = 0.002). CONCLUSION: We found that patients with double gene variations had more severe HCM phenotype and prognosis. The pathogenesis effects of sarcomere gene variation and calcium channel gene variation may be cumulative in HCM populations.
Asunto(s)
Cardiomiopatía Hipertrófica , Sarcómeros , Humanos , Masculino , Femenino , Sarcómeros/genética , Persona de Mediana Edad , Cardiomiopatía Hipertrófica/genética , Adulto , Ecocardiografía , Electrocardiografía , Canales de Calcio/genética , Variación Genética , Análisis MultivarianteRESUMEN
Purpose: To characterize the natural history of normal-tension glaucoma (NTG) in Chinese patients. Methods: The prospective observational cohort study included patients with untreated NTG with a minimum follow-up of 2 years. Functional progression was defined by visual field (VF) deterioration, while structural progression was characterized by thinning of the retinal nerve fiber layer (RNFL) or ganglion cell inner plexiform layer (GCIPL). Results: Among 84 participants (mean age, 60.5 years; mean deviation, -5.01 decibels [dB]) with newly diagnosed NTG followed for an average of 69.7 months, 63.1% progressed during the observation period. Specifically, 29.8% progressed by VF, and 48.8% progressed by either RNFL or GCIPL. In Cox proportional hazards analysis, disc hemorrhage (hazard ratio [HR], 2.82; 95% confidence interval [CI], 1.48-5.35), female gender (HR, 1.98; 95% CI, 1.08-3.62), and mean IOP during the follow-up period (HR, 1.14 per mm Hg; 95% CI, 1.00-1.31) were significant predictors of glaucomatous progression. Additionally, longer axial length (AL; HR, 0.57 per millimeter; 95% CI, 0.35-0.94) was protective against VF progression faster than -0.50 dB/y, and higher minimum diastolic blood pressure (DBP; HR, 0.96 per mm Hg; 95% CI, 0.92-1.00) was protective against structural progression. Conclusions: Nearly two-thirds of untreated Chinese patients with NTG progressed over an average follow-up of 70 months by VF, RNFL, or GCIPL. Disc hemorrhage, female gender, higher mean IOP, shorter AL, and lower minimum DBP were significant predictors for disease progression.
Asunto(s)
Glaucoma , Glaucoma de Baja Tensión , Femenino , Humanos , Persona de Mediana Edad , China/epidemiología , Hemorragia , Glaucoma de Baja Tensión/diagnóstico , Estudios Prospectivos , Factores de Riesgo , Masculino , AncianoRESUMEN
PURPOSE: To explore the association between progressive peripapillary capillary vessel density (pcVD) reduction and the progression of visual field (VF) impairment in individuals with normal tension glaucoma (NTG). DESIGN: Prospective cohort study. METHODS: The study enrolled 110 participants with one eye each, totalling 110 NTG eyes. VF defects were evaluated using standard automated perimetry mean deviation (MD), while pcVD measurements were obtained using optical coherence tomography angiography throughout the follow-up period. Estimates of VF progression were determined by event-based and trend-based analyses. Fast VF progression was defined as an MD slope steeper than -0.5 dB/year, while the slow progression or stable VF was defined as an MD slope better or equal to -0.25 dB/year. Linear mixed-effects models were employed to analyse the rates of change in pcVD reduction and VF MD decline over time. Additionally, univariable and multivariable linear models were used to examine the relationship between pcVD changes and VF loss rates in NTG. RESULTS: Slow VF progression or stable VF was observed in 45% of subjects, while 25% had moderate progression and 30% showed fast progression. Patients with VF progression exhibited faster rate of pcVD reduction in peripapillary global region (-0.73 ± 0.40%/year vs. -0.56 ± 0.35%/year, p = 0.022). Moreover, this rate positively correlated with VF MD decline in NTG (estimate 0.278, 95% CI 0.122-0.433, p = 0.001). CONCLUSION: In individuals with NTG, faster VF progression was linked to a quicker reduction in pcVD, suggesting a positive correlation between pcVD decline and VF deterioration.
Asunto(s)
Capilares , Progresión de la Enfermedad , Angiografía con Fluoresceína , Presión Intraocular , Glaucoma de Baja Tensión , Disco Óptico , Vasos Retinianos , Tomografía de Coherencia Óptica , Pruebas del Campo Visual , Campos Visuales , Humanos , Campos Visuales/fisiología , Glaucoma de Baja Tensión/fisiopatología , Glaucoma de Baja Tensión/diagnóstico , Masculino , Estudios Prospectivos , Femenino , Tomografía de Coherencia Óptica/métodos , Persona de Mediana Edad , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/fisiopatología , Capilares/patología , Capilares/fisiopatología , Disco Óptico/irrigación sanguínea , Presión Intraocular/fisiología , Estudios de Seguimiento , Angiografía con Fluoresceína/métodos , Anciano , Fondo de Ojo , Células Ganglionares de la Retina/patología , Factores de Tiempo , Densidad Microvascular , Fibras Nerviosas/patologíaRESUMEN
The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter. Visual mycelium diameter predictions were validated using a time-lapse camera. Six what-if scenarios were proposed. The mean risk of A. niger contamination per package sold by retailer A was 0.052 in summer and 0.036 in winter, and that for retailer B was 0.037 in summer and 0.022 in winter. Sensitivity analysis revealed that retail storage time, retail temperature, and mold prevalence during factory cooling were the main influencing factors. The what-if scenarios revealed that reducing the retail environmental temperature by 1 °C in summer (from 23.97 °C to 22.97 °C) and winter (from 23.28 °C to 22.28 °C) resulted in a reduction in spoilage risk of 47.0% and 34.7%, respectively. These results indicate that food companies should establish a quantitative microbial risk assessment model that uses real data to evaluate microbial spoilage in food products that can support decision-making processes.
Asunto(s)
Aspergillus niger , Aspergillus , Pan , Temperatura , Microbiología de Alimentos , Medición de RiesgoRESUMEN
Pesticide residues in agri-foods have risk to human health and one solution is to develop simple and accurate methods for rapid detection. We developed a SERS sensor composed of gold nanoparticles (AuNPs) and bacterial cellulose nanocrystal (BCNC) to detect thiram in fruit juice. BCNC-SO3H was used as a stabilizer to support AuNPs via electrostatic repulsion, fabricating a BCNC-AuNPs SERS substrate with uniformly distributed AuNPs. This BCNC-AuNPs SERS substrate was applied to determine thiram residues in peach juice, apple juice, and grape juice with the limits of detection of 0.036 ppm, 0.044 ppm, and 0.044 ppm, respectively. The whole test took 12 min including sample preparation and analysis. The detection limits meet the maximum residue levels of thiram in fruit juices required by China, Europe and North America, indicating that this BCNC-based substrate could serve as a satisfactory SERS sensor for pesticide residue monitoring in the food supply chain.
Asunto(s)
Nanopartículas del Metal , Tiram , Humanos , Tiram/análisis , Jugos de Frutas y Vegetales/análisis , Celulosa/análisis , Oro/química , Nanopartículas del Metal/química , Frutas/química , Espectrometría Raman/métodosRESUMEN
IMPORTANCE: The use of S. cerevisiae and S. uvarum yeast starter cultures is a common practice in the alcoholic beverage fermentation industry. As yeast strains from different or the same species have variable fermentation properties, rapid and reliable typing of yeast strains plays an important role in the final quality of the product. In this study, Raman spectroscopy combined with CNN achieved accurate identification of S. cerevisiae and S. uvarum isolates at both the species and strain levels in a rapid, non-destructive, and easy-to-operate manner. This approach can be utilized to test the identity of commercialized dry yeast products and to monitor the diversity of yeast strains during fermentation. It provides great benefits as a high-throughput screening method for agri-food and the alcoholic beverage fermentation industry. This proposed method has the potential to be a powerful tool to discriminate S. cerevisiae and S. uvarum strains in taxonomic, ecological studies and fermentation applications.
Asunto(s)
Saccharomyces cerevisiae , Vino , Fermentación , Espectrometría Raman , Levaduras , Redes Neurales de la ComputaciónRESUMEN
Food contaminant is a significant issue because of the adverse effects on human health and economy. Traditional detection methods such as liquid chromatography-mass spectroscopy for detecting food contaminants are expensive and time-consuming, and require highly-trained personnel and complicated sample pretreatment. Raman spectroscopy is an advanced analytical technique in a manner of non-destructive, rapid, cost-effective, and ultrasensitive sensing various hazards in agri-foods. In this chapter, we summarized the principle of Raman spectroscopy and surface enhanced Raman spectroscopy, the methods to process Raman spectra, the recent applications of Raman/SERS (surface-enhanced Raman spectroscopy) in detecting chemical contaminants (e.g., pesticides, antibiotics, mycotoxins, heavy metals, and food adulterants) and microbiological hazards (e.g., Salmonella, Campylobacter, Shiga toxigenic E. coli, Listeria, and Staphylococcus aureus) in foods.
Asunto(s)
Escherichia coli , Plaguicidas , Humanos , Espectrometría Raman , Inocuidad de los Alimentos , AntibacterianosRESUMEN
Fruits and vegetables are essential horticultural crops for humans. The quality of fruits and vegetables is critical in determining their nutritional value and edibility, which are decisive to their commercial value. Besides, it is also important to understand the changes in key substances involved in the preservation and processing of fruits and vegetables. Atomic force microscopy (AFM), a powerful technique for investigating biological surfaces, has been widely used to characterize the quality of fruits and vegetables and the substances involved in their preservation and processing from the perspective of nanoscale structure and mechanics. This review summarizes the applications of AFM to investigate the texture, appearance, and nutrients of fruits and vegetables based on structural imaging and force measurements. Additionally, the review highlights the application of AFM in characterizing the morphological and mechanical properties of nanomaterials involved in preserving and processing fruits and vegetables, including films and coatings for preservation, bioactive compounds for processing purposes, nanofiltration membrane for concentration, and nanoencapsulation for delivery of bioactive compounds. Furthermore, the strengths and weaknesses of AFM for characterizing the quality of fruits and vegetables and the substances involved in their preservation and processing are examined, followed by a discussion on the prospects of AFM in this field.