Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 19(6): 3604-3609, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30744792

RESUMEN

In this article, physical characteristics of porous silicon (PS) obtained by electro chemical etching using HAuCl4 in the electrolyte are described. The morphological and optical features of PS decorated with gold-nanoparticles (AuNPs) were analyzed in function of the chemical etching time. The insertion of AuNPs inside the PS were performed simultaneously with the formation of the porous silicon layer. Scanning electron microscopy (SEM) analysis showed the formation and incorporation of AuNPs with an average size of 20 nm in the PS structure, which has a pore size of 1.5 µm. Also, it was possible to observe the loss of Si in function of the etching time. Photoluminescence spectroscopy analysis shows a decreasing of the PL intensity, which can be related to the presence of oxygen in the samples. Raman spectroscopy was used to estimate the size of the Si nanocrystals in the PS structure, which suffers a reduction in size due to the presence of HAuCl4 in the electrolyte.


Asunto(s)
Nanopartículas del Metal , Silicio , Oro , Porosidad , Espectrometría Raman
2.
Materials (Basel) ; 10(12)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29261118

RESUMEN

The search for novel materials and the development of improved processes for water purification have attracted the interest of researchers worldwide and the use of titanium dioxide in photocatalytic processes for the degradation of organic pollutants contained in water has been one of the benchmarks. Compared to crystalline titanium dioxide (cTiO2), the amorphous material has the advantages of having a higher adsorption capacity and being easier to dope with metal and non-metal elements. In this work, we take advantage of these two features to improve its photocatalytic properties in the degradation of Rhodamine B. The structural characterization by XRD analysis gives evidence of its amorphous nature and the SEM micrographs portray the disc morphology of 300 nm in diameter with heterogeneous grain boundaries. The degradation of Rhodamine B tests with the amorphous TiO2 using visible light confirm its improved catalytic activity compared to that of a commercial product, Degussa P25, which is a well-known crystalline material.

3.
Nanotechnology ; 26(39): 395202, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26360552

RESUMEN

In this paper, we study the structural, optical and electro-optical properties of silicon rich oxide (SRO) films, with 6.2 (SRO30) and 7.3 at.% (SRO20) of silicon excess thermally annealed at different temperatures and used as an active layer in light emitting capacitors (LECs). A typical photoluminescence (PL) red-shift is observed as the silicon content and annealing temperature are increased. Nevertheless, when SRO30 films are used in LECs, a resistance switching (RS) behavior from a high current state (HCS) to a low conduction state (LCS) is observed, enhancing the intense blue electroluminescence (EL). This RS produces a long spectral blue-shift (∼227 nm) between the EL and PL band, and it is related to structural defects created by a high current flow through preferential conductive paths breaking off Si-Si bonds from very small silicon nanoparticles (Si-nps) (Eδ (Si ↑ Si ≡ Si) centers). LECs with SRO20 films do not present the RS behavior and only exhibit a slight shift between PL and EL, both in red spectra. The carrier transport in these LEC devices is analyzed as being trap assisted tunnelling and Poole-Frenkel through a quasi 'continuum' of defect traps and quantum dots for the conduction mechanism in SRO30 and SRO20 films, respectively. The results prove the feasibility of obtaining light emitting devices by using simple panel structures with Si-nps embedded in the dielectric layer.

4.
Nanotechnology ; 23(18): 185602, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22516696

RESUMEN

Lead selenide nanoparticles (PbSe NPs) have been obtained through an easy and low cost route using colloidal synthesis in aqueous solution. The synthesis was carried out at room temperature using Extran (Na5P3O10, NaOH and H2O) as surfactant. Hydrochloric acid (HCl) was used to eliminate the generated by-products. The size of PbSe NPs was varied by changing the Pb:Se molar concentration. The PbSe NPs were characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The XRD measurements showed that the PbSe NPs have the face-centered cubic phase structure. The crystal size was found to be between 14 and 20 nm as calculated from the XRD patterns and these values were corroborated with SEM and TEM. Additionally, HRTEM micrographs showed crystalline planes at (200), (220) and (111) of the PbSe NPs, in agreement with the XRD results.

5.
Nanotechnology ; 21(8): 85710, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20101075

RESUMEN

Electroluminescent properties of silicon-rich oxide (SRO) films were studied using metal oxide semiconductor-(MOS)-like devices. Thin SRO films with 4 at.% of silicon excess were deposited by low pressure chemical vapour deposition followed by a thermal annealing at 1100 degrees C. Intense continuous visible and infrared luminescence has been observed when devices are reversely and forwardly bias, respectively. After an electrical stress, the continuous electroluminescence (EL) is quenched but devices show strong field-effect EL with pulsed polarization. A model based on conductive paths--across the SRO film--has been proposed to explain the EL behaviour in these devices.

6.
Nanotechnology ; 20(4): 045201, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19417312

RESUMEN

The electrical properties of silicon-rich oxide (SRO) films in metal-oxide-semiconductor-like structures were analysed by current versus voltage (I-V) and capacitance versus voltage (C-V) techniques. SRO films were thermally annealed to activate the agglomeration of the silicon excess in the form of nanoparticles (Si-nps). High current was observed at low negative and positive voltages, and then at a certain voltage (V(drop)), the current dropped to a low conduction state until a high electric field again activated a high conduction state. C-V measurements demonstrated a capacitance reduction at the same time as the current dropped, but without appreciable flat-band voltage (V(FB)) shifting. The reduction in capacitance and current was also observed after applying an electrical stress. These effects are ascribed to the annihilation of conductive paths created by Si-nps. An equivalent circuit is used to explain the capacitance and current reductions. Finally, the conduction mechanism is also analysed by making use of trap assisted tunnelling and Fowler-Nordheim tunnelling at low and high electric fields, respectively.

7.
Nanotechnology ; 19(16): 165401, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-21825642

RESUMEN

Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 °C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA