RESUMEN
BACKGROUND: Pregnant women with pulmonary hypertension (PH) have higher mortality rates and poor foetal/neonatal outcomes. Tools to assess these risk factors are not well established. METHODS: Predictive and prognostic nomograms were constructed using data from a "Development" cohort of 420 pregnant patients with PH, recorded between January 2009 and December 2018. Logistic regression analysis established models to predict the probability of adverse maternal and foetal/neonatal events and overall survival by Cox analysis. An independent "Validation" cohort comprised data of 273 consecutive patients assessed from January 2019 until May 2022. Nomogram performance was evaluated internally and implemented with online software to increase the ease of use. RESULTS: Type I respiratory failure, New York Heart Association functional class, N-terminal pro-brain natriuretic peptide [Formula: see text] 1400 ng/L, arrhythmia, and eclampsia with pre-existing hypertension were independent risk factors for maternal mortality or heart failure. Type I respiratory failure, arrhythmia, general anaesthesia for caesarean section, New York Heart Association functional class, and N-terminal pro-brain natriuretic peptide [Formula: see text] 1400 ng/L were independent predictors of pulmonary hypertension survival during pregnancy. For foetal/neonatal adverse clinical events, type I respiratory failure, arrhythmia, general anaesthesia for caesarean section, parity, platelet count, fibrinogen, and left ventricular systolic diameter were important predictors. Nomogram application for the Development and Validation cohorts showed good discrimination and calibration; decision curve analysis demonstrated their clinical utility. CONCLUSIONS: The nomogram and its online software can be used to analyse individual mortality, heart failure risk, overall survival prediction, and adverse foetal/neonatal clinical events, which may be useful to facilitate early intervention and better survival rates.
Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Insuficiencia Respiratoria , Humanos , Recién Nacido , Femenino , Embarazo , Nomogramas , Hipertensión Pulmonar/diagnóstico , Cesárea , Pronóstico , Estudios RetrospectivosRESUMEN
Recently, silver nanoparticles have been widely applied in various fields as inorganic antimicrobial agents. This present study adopted a facile, environmentally friendly and cost-effective method to green synthesized silver nanoparticles via the extract of Dioscorea cirrhosa tuber (DCTE-Ag NPs). Green synthesized Ag nanoparticles were characterized by using the transmission electron microscope, X-ray diffraction analysis (XRD), UV-visible spectroscopy (UV-Vis), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc. The results authenticate that the green synthesized Ag NPs were spherical in shape with an average size of 13.87 ± 2.38 nm and have crystalline properties. According to the antibacterial test, the average width of the inhibition zone of green synthesized Ag NPs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were 14.17 ± 0.84 mm and 13.01 ± 0.72 mm, respectively. The antibacterial property of Ag NPs was further evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and the results indicated that they exhibited outstanding antimicrobial activity. Besides, DCTE-Ag NPs has the good bacteriostasis function, which can damage bacterial cells membrane to leak the intracellular contents and inhibit the activity of Na+/K+-ATP-ase to hinder energy conversion.