Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Nat Prod ; 87(6): 1501-1512, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38603577

RESUMEN

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.


Asunto(s)
Cannabidiol , Carcinoma Epitelial de Ovario , Microbioma Gastrointestinal , Neoplasias Ováricas , Cannabidiol/farmacología , Cannabidiol/química , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Humanos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Animales , Ratones , Receptores ErbB/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Estructura Molecular
2.
Commun Biol ; 7(1): 512, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684865

RESUMEN

Neoantigens derived from somatic mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), the most frequently mutated oncogene, represent promising targets for cancer immunotherapy. Recent research highlights the potential role of human leukocyte antigen (HLA) allele A*11:01 in presenting these altered KRAS variants to the immune system. In this study, we successfully generate and identify murine T-cell receptors (TCRs) that specifically recognize KRAS8-16G12V from three predicted high affinity peptides. By determining the structure of the tumor-specific 4TCR2 bound to KRASG12V-HLA-A*11:01, we conduct structure-based design to create and evaluate TCR variants with markedly enhanced affinity, up to 15.8-fold. This high-affinity TCR mutant, which involved only two amino acid substitutions, display minimal conformational alterations while maintaining a high degree of specificity for the KRASG12V peptide. Our research unveils the molecular mechanisms governing TCR recognition towards KRASG12V neoantigen and yields a range of affinity-enhanced TCR mutants with significant potential for immunotherapy strategies targeting tumors harboring the KRASG12V mutation.


Asunto(s)
Antígenos de Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Receptores de Antígenos de Linfocitos T , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Animales , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/química , Ratones , Humanos , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Mutación , Inmunoterapia
3.
Nanomaterials (Basel) ; 14(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38470802

RESUMEN

The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.

4.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909282

RESUMEN

Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Humanos , Ratones , Animales , Conejos , Enterovirus Humano A/genética , Antígenos Virales/genética , Proteínas de la Cápside/genética , Genotipo , Anticuerpos Monoclonales
5.
J Cancer ; 14(12): 2315-2328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576404

RESUMEN

Immune checkpoint inhibitor (ICI) therapy has dramatically changed cancer treatment, opening novel opportunities to cure malignant diseases. To date, most prevalently targeted immune checkpoints are programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), with many others being under extensive investigations. However, according to available data, only a fraction of patients may respond to ICI therapy. Additionally, this therapy may cause severe adverse immune-related side effects, such as diarrhea, headache, muscle weakness, rash, hepatitis and leucopenia, although most of them are not fatal, they can affect the patient's treatment outcome and quality of life. On the other hand, growing evidence has shown that phytochemicals with anticancer effects may combine ICI therapy to augment the safety and effectiveness of the treatment against cancer while reducing the adverse side effects. In this review, we summarize the state of art in the various experiments and clinical application of ICIs plus phytochemicals, with a focus on their combined use as a novel therapeutic strategy to cure cancer.

6.
Discov Med ; 35(176): 418-428, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272108

RESUMEN

OBJECTIVES: To study the effects of curcumin on the proliferation, invasion, apoptosis, and radiosensitivity of the radioresistant nasopharyngeal carcinoma (NPC) C6661-IR strain as well as the potential radiosensitization mechanism. METHODS: NPC cells were continuously irradiated with different intensities of radiation to induce radiation-resistant cell lines. A plate clone formation assay was used to evaluate the effect of curcumin on the radiosensitivity of NPC cells. 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) assay was conducted to detect changes in cell viability. Flow cytometry was employed to analyze apoptosis percentage as well as Transwell® assay and immunofluorescence assay to observe cell invasion. Western blotting was applied to detect the expression levels of Bax, Bcl-2, and pro/cleaved-caspase 3. MiR-205-5p mimics and si-TP53INP1 were synthesized and transfected into C6661-IR cells, and the cells were then incubated with 10 µm/L curcumin. Real-time quantitative reverse transcription PCR (RT-qPCR) was used to measure miR-205-5p levels and western blotting was conducted to detect the expression of TP53INP1. RESULTS: The optimal radiation dose of X-ray was 6 Gy, and this dose was used in all subsequent experiments. Curcumin treatment significantly inhibited the proliferation and invasion of C6661-IR cells, promoted apoptosis and enhanced radiosensitivity. Compared to the 0 Gy+Cur group and the 6 Gy+Cur group, the miR-205-5p levels were higher in the C6661-IR cells of the 0 Gy and 6 Gy groups. Moreover, miR-204-5p was found to directly target TP53INP1. Curcumin downregulated miR-205-5p levels and upregulated TP53INP1 expression (p < 0.05). Thus, modulation of miR-205-5p or TP53INP1 expression attenuates the biological effects of curcumin on C6661-IR cells. CONCLUSIONS: Curcumin inhibited the proliferation and invasion of C6661-IR, promoted apoptosis, and enhanced its radiosensitivity to X-rays by mediating miR-205-5p/TP53INP1 expression.


Asunto(s)
Curcumina , MicroARNs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Curcumina/farmacología , Curcumina/uso terapéutico , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Tolerancia a Radiación , Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Portadoras/metabolismo , Proteínas de Choque Térmico/metabolismo
7.
Emerg Microbes Infect ; 12(1): e2187245, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36987861

RESUMEN

Over 3 billion doses of inactivated vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been administered globally. However, our understanding of the immune cell functional transcription and T cell receptor (TCR)/B cell receptor (BCR) repertoire dynamics following inactivated SARS-CoV-2 vaccination remains poorly understood. Here, we performed single-cell RNA and TCR/BCR sequencing on peripheral blood mononuclear cells at four time points after immunization with the inactivated SARS-CoV-2 vaccine BBIBP-CorV. Our analysis revealed an enrichment of monocytes, central memory CD4+ T cells, type 2 helper T cells and memory B cells following vaccination. Single-cell TCR-seq and RNA-seq comminating analysis identified a clonal expansion of CD4+ T cells (but not CD8+ T cells) following a booster vaccination that corresponded to a decrease in the TCR diversity of central memory CD4+ T cells and type 2 helper T cells. Importantly, these TCR repertoire changes and CD4+ T cell differentiation were correlated with the biased VJ gene usage of BCR and the antibody-producing function of B cells post-vaccination. Finally, we compared the functional transcription and repertoire dynamics in immune cells elicited by vaccination and SARS-CoV-2 infection to explore the immune responses under different stimuli. Our data provide novel molecular and cellular evidence for the CD4+ T cell-dependent antibody response induced by inactivated vaccine BBIBP-CorV. This information is urgently needed to develop new prevention and control strategies for SARS-CoV-2 infection. (ClinicalTrials.gov Identifier: NCT04871932).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Leucocitos Mononucleares , SARS-CoV-2 , Receptores de Antígenos de Linfocitos B , Inmunización Secundaria , Análisis de Secuencia de ARN , Anticuerpos Antivirales
8.
Microorganisms ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838437

RESUMEN

Dysbiosis of the gut microbiota and metabolites is found in both pulmonary hypertension patients and pulmonary hypertension rodent models. However, the exact changes in gut microbiota during the development of pulmonary hypertension is unclear. The function of the gut microbiota is also ambiguous. Here, this study showed that the gut microbiota was disrupted in rats with hypoxia (Hyp)-, hypoxia/Sugen5416 (HySu)-, and monocrotaline (MCT)-induced pulmonary hypertension. The gut microbiota is dynamically changed during the development of Hyp-, HySu-, and MCT-induced rat pulmonary hypertension. The variation in the α diversity of the gut microbiota in Hyp-induced pulmonary hypertension rats was similar to that in rats with MCT-induced pulmonary hypertension and different from that in rats with HySu-induced pulmonary hypertension. In addition, six plasma biomarkers, His, Ala, Ser, ADMA, 2-hydroxybutyric acid, and cystathionine, were identified in Hyp-induced pulmonary hypertension rats. Furthermore, a disease-associated network connecting Streptococcus with Hyp-induced pulmonary hypertension-associated metabolites was described here, including trimethylamine N-oxide, Asp, Asn, Lys, His, Ser, Pro, and Ile.

9.
Phytomedicine ; 106: 154401, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029647

RESUMEN

BACKGROUND: Ovarian cancer has the highest mortality among all gynecological malignancies; currently, no effective therapeutics are available for its treatment. Naringenin has been shown to inhibit the progression of various cancers, but its inhibitory effect on ovarian cancer remains unknown. PURPOSE: This study aimed to evaluate the inhibitory effects of naringenin on ovarian cancer and elucidate the underlying mechanisms. METHODS: Cancer cell proliferation was detected by cell counting kit-8 and crystal violet assays, and the migration capability was determined by wound healing and transwell assays. Western blotting and immunohistochemistry assays were employed to determine the expression levels of the epidermal growth factor receptor, phosphatidylinositol 3-kinase (PI3K) and cyclin D1 in vitro and in vivo, respectively. An ES-2 xenograft nude mouse model was established for the in vivo experiments, and fecal samples were collected for intestinal microbiota analysis by 16S rDNA sequencing. RESULTS: Naringenin suppressed the proliferation and migration of A2780 and ES-2 cancer cell lines and downregulated PI3K in vitro. In animal experiments, naringenin treatment significantly decreased the tumor weight and volume, and oral administration exhibited greater effects than intraperitoneal injection. Additionally, naringenin treatment ameliorated the population composition of the microbiota in animals with ovarian cancer and significantly increased the abundances of Alistipes and Lactobacillus. CONCLUSION: Naringenin suppresses epithelial ovarian cancer by inhibiting PI3K pathway expression and ameliorating the gut microbiota, and the oral route is more effective than parenteral administration.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Ciclina D1 , ADN Ribosómico/farmacología , Receptores ErbB/metabolismo , Femenino , Flavanonas , Violeta de Genciana/farmacología , Violeta de Genciana/uso terapéutico , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
10.
Curr Pharm Des ; 28(24): 1949-1965, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619256

RESUMEN

Trabectedin, a tetrahydroisoquinoline alkaloid, is the first marine antineoplastic agent approved with special anticancer mechanisms involving DNA binding, DNA repair pathways, transcription regulation and regulation of the tumor microenvironment. It has favorable clinical applications, especially for the treatment of patients with advanced soft tissue sarcoma, who failed in anthracyclines and ifosfamide therapy or could not receive these agents. Currently, trabectedin monotherapy regimen and regimens of combined therapy with other agents are both widely used for the treatment of malignancies, including soft tissue sarcomas, ovarian cancer, breast cancer, and non-small-cell lung cancer. In this review, we have summarized the basic information and some updated knowledge on trabectedin, including its molecular structure, metabolism in various cancers, pharmaceutical mechanisms, clinical applications, drug combination, and adverse reactions, along with prospects of its possibly more optimal use in cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Sarcoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos Alquilantes/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Dioxoles/farmacología , Dioxoles/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sarcoma/inducido químicamente , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Trabectedina/uso terapéutico , Microambiente Tumoral
11.
Front Immunol ; 13: 822616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359986

RESUMEN

The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.


Asunto(s)
Citidina Desaminasa , Lampreas , Animales , Citidina , Citidina Desaminasa/genética , ADN/metabolismo , Lampreas/genética , Lampreas/metabolismo , Vertebrados/metabolismo
12.
Cell Biosci ; 12(1): 27, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255963

RESUMEN

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is a lethal cardiovascular disease with the characteristic of severe remodeling of pulmonary vascular. Although a large number of dysregulated mRNAs, lncRNAs, circRNAs, and miRNAs related to HPH have been identified from extensive studies, the competitive endogenous RNA (ceRNA) regulatory network in the pulmonary artery that responds to hypoxia remains largely unknown. RESULTS: Transcriptomic profiles in the pulmonary arteries of HPH rats were characterized through high-throughput RNA sequencing in this study. Through relatively strict screening, a set of differentially expressed RNAs (DERNAs) including 19 DEmRNAs, 8 DElncRNAs, 19 DEcircRNAs, and 23 DEmiRNAs were identified between HPH and normal rats. The DEmRNAs were further found to be involved in cell adhesion, axon guidance, PPAR signaling pathway, and calcium signaling pathway, suggesting their crucial role in HPH. Moreover, a hypoxia-induced ceRNA regulatory network in the pulmonary arteries of HPH rats was constructed according to the ceRNA hypothesis. More specifically, the ceRNA network was composed of 10 miRNAs as hub nodes, which might be sponged by 6 circRNAs and 7 lncRNAs, and directed the expression of 18 downstream target genes that might play important role in the progression of HPH. The expression patterns of selected DERNAs in the ceRNA network were then validated to be consistent with sequencing results in another three independent batches of HPH and normal control rats. The diagnostic effectiveness of several hub mRNAs in ceRNA network was further evaluated through investigating their expression profiles in patients with pulmonary artery hypertension (PAH) recorded in the Gene Expression Omnibus (GEO) dataset GSE117261. Dysregulated POSTN, LTBP2, SPP1, and LSAMP were observed in both the pulmonary arteries of HPH rats and lung tissues of PAH patients. CONCLUSIONS: A ceRNA regulatory network in the pulmonary arteries of HPH rats was constructed, 10 hub miRNAs and their corresponding interacting lncRNAs, circRNAs, and mRNAs were identified. The expression patterns of selected DERNAs were further validated to be consistent with the sequencing result. POSTN, LTBP2, SPP1, and LSAMP were suggested to be potential diagnostic biomarkers and therapeutic targets for PAH.

13.
Cell Biosci ; 12(1): 3, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983626

RESUMEN

BACKGROUND: Neonates possess an immature and plastic immune system, which is a major cause of some diseases in newborns. Necrotizing enterocolitis (NEC) is a severe and devastating intestinal disease that typically affects premature infants. However, the development of intestinal immune cells in neonates and their roles in the pathological process of NEC have not been elucidated. RESULTS: We examined the ontogeny of intestinal lamina propria lymphocytes in the early life of mice and found a high percentage of RORγt+ cells (containing inflammatory Th17 and ILC3 populations) during the first week of life. Importantly, the proportion of RORγt+ cells of intestinal lamina propria further increased in both NEC mice and patients tissue than the control. Furthermore, the application of GSK805, a specific antagonist of RORγt, inhibited IL-17A release and ameliorated NEC severity. CONCLUSIONS: Our data reveal the high proportion of RORγt+ cells in newborn mice may directly contribute to the development of NEC.

14.
Cell Discov ; 7(1): 89, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34580278

RESUMEN

SARS-CoV-2 outbreak has been declared by World Health Organization as a worldwide pandemic. However, there are many unknowns about the antigen-specific T-cell-mediated immune responses to SARS-CoV-2 infection. Here, we present both single-cell TCR-seq and RNA-seq to analyze the dynamics of TCR repertoire and immune metabolic functions of blood T cells collected from recently discharged COVID-19 patients. We found that while the diversity of TCR repertoire was increased in discharged patients, it returned to basal level ~1 week after becoming virus-free. The dynamics of T cell repertoire correlated with a profound shift of gene signatures from antiviral response to metabolism adaptation. We also demonstrated that the top expanded T cell clones (~10% of total T cells) display the key anti-viral features in CD8+ T cells, confirming a critical role of antigen-specific T cells in fighting against SARS-CoV-2. Our work provides a basis for further analysis of adaptive immunity in COVID-19 patients, and also has implications in developing a T-cell-based vaccine for SARS-CoV-2.

15.
Front Physiol ; 12: 712139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531759

RESUMEN

Mesenchymal stem cell (MSC) therapy is a promising therapeutic approach based on its strong effect on pulmonary hypertension (PH) in rats. However, the detailed mechanism of MSC therapy remains unknown. Alterations in the gut microbiota were found in both type 1 pulmonary arterial hypertension patients and hypoxia/SU5416- or monocrotaline (MCT)-induced PH rats. However, whether the therapeutic mechanism of MSCs is associated with the gut microbiota is poorly understood. Here, we found that gut microbiota homeostasis was disrupted in hypoxia-induced PH mice due to the increased Firmicutes-to-Bacteroidetes (F/B) ratio; enhanced abundances of harmful Marinifilaceae, Helicobacteraceae, and Lactobacillaceae; and decreased abundances of beneficial Bacteroidaceae, Prevotellaceae, Tannerellaceae, and Lachnospiraceae. Unexpectedly, reverses of the increase in disease-associated microbiota and decrease in anti-inflammatory and immunomodulatory functional microbiota were observed in the MSC-treated group. We also identified harmful Erysipelotrichaceae, Alphaproteobacteria, Christensenella timonensis, Coriobacteriales, and Rhodospirillales that may serve as gut microbiota biomarkers of hypoxia-induced PH mice. Micrococcaales, Nesterenkonia, Anaerotruncus, and Tyzzerella may serve as gut microbiota biomarkers of MSC-treated mice. In summary, MSC treatment suppresses hypoxia-induced pulmonary hypertension in mice, and alterated gut microbiota may play a role in the development and progression of PH. The mechanism of MSC therapy is associated with various metabolic pathways of the gut microbiota in hypoxia model PH mice.

16.
Proc Natl Acad Sci U S A ; 117(44): 27509-27515, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077598

RESUMEN

Immune checkpoint-blocking antibodies that attenuate immune tolerance have been used to effectively treat cancer, but they can also trigger severe immune-related adverse events. Previously, we found that Bifidobacterium could mitigate intestinal immunopathology in the context of CTLA-4 blockade in mice. Here we examined the mechanism underlying this process. We found that Bifidobacterium altered the composition of the gut microbiota systematically in a regulatory T cell (Treg)-dependent manner. Moreover, this altered commensal community enhanced both the mitochondrial fitness and the IL-10-mediated suppressive functions of intestinal Tregs, contributing to the amelioration of colitis during immune checkpoint blockade.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Bifidobacterium/inmunología , Microbioma Gastrointestinal/inmunología , Probióticos/administración & dosificación , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/inducido químicamente , Enfermedades Autoinmunes/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Tolerancia Inmunológica , Interleucina-10/genética , Interleucina-10/metabolismo , Ratones , Ratones Noqueados , Linfocitos T Reguladores/metabolismo
17.
BMC Biol ; 18(1): 29, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183814

RESUMEN

BACKGROUND: Immune checkpoint inhibitor (ICPI) can augment the anti-tumour response by blocking negative immunoregulators with monoclonal antibodies. The anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody is the first ICPI which has shown remarkable benefits in the clinical treatment of cancers. However, the increased activity of the immune system also causes some side effects called immune-related adverse events (irAEs). Colitis is one of the most common irAEs related to anti-CTLA-4 immunotherapy. RESULTS: We identified that CD4+ T cells were the primary responders in CTLA-4 blockade and that the expansion of gut-homing CD4+ T cells by anti-CTLA-4 therapy was independent of CD103. We used dextran sulfate sodium (DSS)-induced colitis mice as our model and tested the possibility of using a trafficking-blocking antibody to treat anti-CTLA-4 antibody-induced irAEs. We found that blocking T cell homing increased colitis severity in the context of CTLA-4 blockade and that gut-trafficking blockade had different effects on different Th subsets and could facilitate the proliferation of Th17 cells in the lamina propria (LP). CONCLUSIONS: Our data reveals the fundamental mechanism underlying trafficking-blocking antibody therapy for CTLA-4 blockade-induced colitis and provide a caution in regard to apply trafficking-blocking antibody treatment under CTLA-4 blockade condition.


Asunto(s)
Anticuerpos Bloqueadores/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Colitis/inmunología , Linfocitos T/inmunología , Animales , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran/efectos adversos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
18.
Fish Shellfish Immunol ; 83: 416-424, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30195918

RESUMEN

Autophagy is a homeostatic process which degrades cytoplasmic constituents to maintain the balance of organs when they were challenged with nutrient stress. It also participates in cancer, neurodegenerative disorders, aging and innate immune defense. In order to reveal how autophagy participates in innate immune response when invertebrates evolved into vertebrates. Firstly, we performed a systematic analysis of Atg genes and found that they are highly conserved among lancelet, lamprey and zebrafish. Then, we observed autophagosomes upon starvation by TEM in lancelet, lamprey and zebrafish and found that the morphology of autophagosome is similar to that was observed in yeast and mammals. In addition, rapamycin can induce autophagy in lamprey leukocytes and the deficiency of human Beclin1 protein can be rescued by lancelet and lamprey Beclin1 proteins. When lamprey leukocytes were treated with polyI:C and LPS, autophagy was induced. Moreover, when lamprey leukocytes were challenged with live E. coli, phagocytosis along with autophagy was triggered to degrade pathogenic bacteria. In all, our study here indicated that autophagy is highly conserved during evolution and plays a key role in innate defense when invertebrates evolved into vertebrates.


Asunto(s)
Autofagia/inmunología , Inmunidad Innata , Lampreas/inmunología , Animales , Beclina-1/genética , Escherichia coli , Células HEK293 , Humanos , Anfioxos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Lipopolisacáridos/farmacología , Poli I-C/farmacología , Saccharomyces cerevisiae , Staphylococcus aureus , Pez Cebra
19.
Open Biol ; 7(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29070611

RESUMEN

Chemokines promote directional cell migration through binding to G-protein-coupled receptors, and as such are involved in a large array of developmental, homeostatic and pathological processes. They also interact with heparan sulfate (HS), the functional consequences of which depend on the respective location of the receptor- and the HS-binding sites, a detail that remains elusive for most chemokines. Here, to set up a biochemical framework to investigate how HS can regulate CXCL13 activity, we solved the solution structure of CXCL13. We showed that it comprises an unusually long and disordered C-terminal domain, appended to a classical chemokine-like structure. Using three independent experimental approaches, we found that it displays a unique association mode to HS, involving two clusters located in the α-helix and the C-terminal domain. Computational approaches were used to analyse the HS sequences preferentially recognized by the protein and gain atomic-level understanding of the CXCL13 dimerization induced upon HS binding. Starting with four sets of 254 HS tetrasaccharides, we identified 25 sequences that bind to CXCL13 monomer, among which a single one bound to CXCL13 dimer with high consistency. Importantly, we found that CXCL13 can be functionally presented to its receptor in a HS-bound form, suggesting that it can promote adhesion-dependent cell migration. Consistently, we designed CXCL13 mutations that preclude interaction with HS without affecting CXCR5-dependent cell signalling, opening the possibility to unambiguously demonstrate the role of HS in the biological function of this chemokine.


Asunto(s)
Sitios de Unión , Quimiocina CXCL13/química , Quimiocina CXCL13/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Conformación Molecular , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Quimiocina CXCL13/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes , Soluciones , Relación Estructura-Actividad
20.
Proc Natl Acad Sci U S A ; 114(9): 2319-2324, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193885

RESUMEN

Chemokines control the migration of a large array of cells by binding to specific receptors on cell surfaces. The biological function of chemokines also depends on interactions between nonreceptor binding domains and proteoglycans, which mediate chemokine immobilization on cellular or extracellular surfaces and formation of fixed gradients. Chemokine gradients regulate synchronous cell motility and integrin-dependent cell adhesion. Of the various chemokines, CXCL12 has a unique structure because its receptor-binding domain is distinct and does not overlap with the immobilization domains. Although CXCL12 is known to be essential for the germinal center (GC) response, the role of its immobilization in biological functions has never been addressed. In this work, we investigated the unexplored paradigm of CXCL12 immobilization during the germinal center reaction, a fundamental process where cellular traffic is crucial for the quality of humoral immune responses. We show that the structure of murine germinal centers and the localization of GC B cells are impaired when CXCL12 is unable to bind to cellular or extracellular surfaces. In such mice, B cells carry fewer somatic mutations in Ig genes and are impaired in affinity maturation. Therefore, immobilization of CXCL12 is necessary for proper trafficking of B cells during GC reaction and for optimal humoral immune responses.


Asunto(s)
Linfocitos B/inmunología , Quimiocina CXCL12/inmunología , Centro Germinal/inmunología , Proteínas Inmovilizadas/inmunología , Inmunidad Humoral , Inmunoglobulinas/genética , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Linfocitos B/citología , Movimiento Celular , Quimiocina CXCL12/genética , Eritrocitos/química , Eritrocitos/inmunología , Expresión Génica , Regulación de la Expresión Génica , Centro Germinal/citología , Proteínas Inmovilizadas/genética , Inmunización , Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Ovinos , Hipermutación Somática de Inmunoglobulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA