Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Acta Biomater ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38997078

RESUMEN

Biodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.%, RE = rare earth of Y; or Ho; or Er) alloys intended for use in biodegradable bone substitutes. The microstructural characteristics, mechanical behavior, corrosion resistance, cytocompatibility, osteogenic differentiation, and capacity of osteogenesis in vivo of the Zn-5RE alloys are comparatively investigated. The Zn-5Y alloy demonstrates the best tensile properties, encompassing a 138 MPa tensile yield strength, a 302 MPa ultimate tensile strength, and 63% elongation, while the Zn-5Ho alloy shows the highest compression yield strength of 260 MPa and Vickers hardness of 104 HV. The Zn-5Er alloy shows a 126 MPa tensile yield strength, a 279 MPa ultimate tensile strength, 52% elongation, a 196 MPa compression yield strength, and a 101 HV Vickers microhardness. Further, the Zn-5Er alloy has a 130 µm per year corrosion rate in electrochemical tests and a 26 µm per year degradation rate in immersion tests, which is the lowest among the tested alloys. It also has the best in vitro osteogenic differentiation ability and capacity for osteogenesis and osteointegration in vivo after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications. STATEMENT OF SIGNIFICANCE: This work reports the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded (HE) Zn-5 wt.%-rare earth (Zn-5RE) alloys using single yttrium (Y), holmium (Ho), and erbium (Er) alloying for biodegradable bone-implant applications. Our findings demonstrate that the HE Zn-5Er alloy showed σuts of 279 MPa, tensile yield strength of 126 MPa, elongation of 51.6%, compression yield strength of 196 MPa, and microhardness of 101.2 HV. Further, HE Zn-5Er showed the lowest electrochemical corrosion rate of 130 µm/y and lowest degradation rate of 26 µm/y, and the highest in vitro osteogenic differentiation ability, in vivo osteogenesis, and osteointegration ability after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications.

2.
EClinicalMedicine ; 73: 102684, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007060

RESUMEN

Background: The FDA's alerts regarding the T-cell lymphoma risk post CAR-T therapy has garnered global attention, yet a comprehensive profile of second primary malignancies (SPMs) following CAR-T treatment is lacking. Methods: We extracted adverse event reports of hematological malignancies (HMs) patients with clearly definable SPMs from the FAERS and VigiBase databases (2017-2023). Disproportionality analysis using reporting odds ratio (ROR) and adjusted ROR was performed to assess associations between SPMs and CAR-T therapy. Time-to-onset analysis explored factors affecting SPM manifestation. Findings: SPMs post CAR T-cell therapy include HMs and solid tumors. T-cell lymphoma and myelodysplastic syndromes were consistently identified as positive signals across the overall and subgroup analyses. Hematological SPMs showed earlier onset with increasing annual incidence post CAR-T therapy, whereas solid tumors exhibit delayed manifestation. SPMs in CAR-T recipients had significantly earlier onset than non-recipients. Furthermore, age-specific characteristics reveal earlier SPM manifestations in pediatric, adolescent, and young adult populations compared to older populations post CAR-T therapy. Interpretation: The current SPM profile highlights the necessity of long-term safety monitoring for all CAR-T recipients given the observed yearly increase of SPMs. Customizing long-term SPM screening across different age groups may enhance early detection and intervention strategies, ultimately improving patient outcomes in the follow-up of CAR-T recipients. Funding: This work was supported by grants from the Natural Science Foundation of Guangdong Province (2018A030313846 and 2021A1515012593), the Science and Technology Planning Project of Guangdong Province (2019A030317020), the National Natural Science Foundation of China (81802257, 81871859, 81772457, 82172750, 82172811, and 82260546), the Guangdong Basic and Applied Basic Research Foundation (Guangdong-Guangzhou Joint Funds) (2022A1515111212), and the Science and Technology Program of Guangzhou (2023A04J1257).

3.
Oncol Lett ; 28(3): 407, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38988445

RESUMEN

Despite significant improvements that have been made in terms of progression-free survival and overall survival rates brought about by targeted therapy in non-small cell lung cancer (NSCLC), the emergence of drug resistance remains a limiting factor. However, a previous study has shown promising results by combining local microwave ablation (MWA) with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy for patients with oligometastatic NSCLC. The current study presented the case of a Chinese female patient who was identified as having lung adenocarcinoma (LADC) with EGFR exon 19 deletions (Del) in January 2014, and who experienced multiple instances of oligoprogression but showed a positive response to a combination of chemotherapy, MWA and a TKI drug. First, the patient was treated with four cycles of chemotherapy (120 mg docetaxel on day 1 and 40 mg cisplatin on days 1, 2 and 3; every three weeks as one cycle) and gefitinib (Iressa; 250 mg/day), maintaining a partial response for 17 months. In August 2015, a new solitary lesion was identified in the right lung and erlotinib (Tarceva; 150 mg/day) was administered for 3 months thereafter. In response, the patient underwent ablation of both the new right lung lesion and the primary left lung lesion in January 2016. Subsequently, a treatment course consisting of six cycles of chemotherapy (0.8 g pemetrexed on day 1 and 70 mg nedaplatin on days 1 and 2; every three weeks as one cycle) resulted in stable disease. In May 2016, the patient began treatment with osimertinib (AZD9291; 80 mg/day), resulting in a rapid shrinkage of the mediastinal lymph node after one month, which has been providing a benefit for the patient for 82 months and counting. Of note, the patient also developed metachronous colon cancer in January 2020, followed by the identification of right posterior liver metastases in February 2020 and lung metastases in May 2021 and in February 2022. To address this, the patient underwent radical resection of colon cancer and liver metastasectomy and received a combination of chemotherapy with bevacizumab, along with MWA for lung metastases. Remarkably, the patient has achieved long-term survival of 110 months. In conclusion, this case highlights the promising potential of combining MWA with systemic therapy for a patient with advanced LADC harboring EGFR exon 19 Del and metachronous lung and liver-metastasized colon adenocarcinoma. MWA effectively controlled both in situ oligoprogression and new oligoprogression, thereby enhancing the efficacy of systematic chemotherapy/TKI therapy. Furthermore, this case report emphasizes the importance of repeated histologic biopsies and genetic testing as reliable indicators for adjusting treatment regimens. Physicians should also remain vigilant regarding the occurrence of secondary primary carcinomas, and timely and accurate adjustments to treatment plans will be of significant benefit to patients in terms of treatment efficacy and overall quality of life.

4.
J Am Chem Soc ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007870

RESUMEN

Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.

5.
Chem Asian J ; : e202400613, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018086

RESUMEN

In this study, a difluorocarbene-promoted O-O bond activation of peroxy acids is developed through the insertion of difluorocarbene into O-H bond. This activation strategy in synergy with O-B coordination with boronic acids/ester greatly polarizes the O-O bond for in-situ generation of carboxylium species that reacts with the nucleophilic part of boronic acids in a concerted way to produce esters. Good efficiency and functional group tolerance are demonstrated. Application of this method to the functionalization of a boronic acid drug used as HSL enzyme inhibitor produces smoothly the ester derivative. This difluorocarbene-mediated O-O bond activation strategy is conceptually different from traditional radical type methods, and is also complementary to conventional esterification methods with a distinct retro-synthetic disconnection.

6.
Front Immunol ; 15: 1424806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983852

RESUMEN

Background: The current understanding of the mechanisms by which metal ion metabolism promotes the progression and drug resistance of osteosarcoma remains incomplete. This study aims to elucidate the key roles and mechanisms of genes involved in cuproptosis-related sphingolipid metabolism (cuproptosis-SPGs) in regulating the immune landscape, tumor metastasis, and drug resistance in osteosarcoma cells. Methods: This study employed multi-omics approaches to assess the impact of cuproptosis-SPGs on the prognosis of osteosarcoma patients. Lasso regression analysis was utilized to construct a prognostic model, while multivariate regression analysis was applied to identify key core genes and generate risk coefficients for these genes, thereby calculating a risk score for each osteosarcoma patient. Patients were then stratified into high-risk and low-risk groups based on their risk scores. The ESTIMATE and CIBERSORT algorithms were used to analyze the level of immune cell infiltration within these risk groups to construct the immune landscape. Single-cell analysis was conducted to provide a more precise depiction of the expression patterns of cuproptosis-SPGs among immune cell subtypes. Finally, experiments on osteosarcoma cells were performed to validate the role of the cuproptosis-sphingolipid signaling network in regulating cell migration and apoptosis. Results: In this study, seven cuproptosis-SPGs were identified and used to construct a prognostic model for osteosarcoma patients. In addition to predicting survival, the model also demonstrated reliability in forecasting the response to chemotherapy drugs. The results showed that a high cuproptosis-sphingolipid metabolism score was closely associated with reduced CD8 T cell infiltration and indicated poor prognosis in osteosarcoma patients. Cellular functional assays revealed that cuproptosis-SPGs regulated the LC3B/ERK signaling pathway, thereby triggering cell death and impairing migration capabilities in osteosarcoma cells. Conclusion: The impact of cuproptosis-related sphingolipid metabolism on the survival and migration of osteosarcoma cells, as well as on CD8 T cell infiltration, highlights the potential of targeting copper ion metabolism as a promising strategy for osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Esfingolípidos , Osteosarcoma/inmunología , Osteosarcoma/genética , Osteosarcoma/mortalidad , Osteosarcoma/patología , Humanos , Neoplasias Óseas/inmunología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Esfingolípidos/metabolismo , Pronóstico , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Multiómica
7.
Clin Transl Med ; 14(7): e1761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997802

RESUMEN

BACKGROUND AND MAIN BODY: The anti-tumour and tumour-promoting roles of B cells in the tumour microenvironment (TME) have gained considerable attention in recent years. As essential orchestrators of humoral immunity, B cells potentially play a crucial role in anti-tumour therapies. Chemotherapy, a mainstay in cancer treatment, influences the proliferation and function of diverse B-cell subsets and their crosstalk with the TME. Modulating B-cell function by targeting B cells or their associated cells may enhance chemotherapy efficacy, presenting a promising avenue for future targeted therapy investigations. CONCLUSION: This review explores the intricate interplay between chemotherapy and B cells, underscoring the pivotal role of B cells in chemotherapy treatment. We summarise promising B-cell-related therapeutic targets, illustrating the immense potential of B cells in anti-tumour therapy. Our work lays a theoretical foundation for harnessing B cells in chemotherapy and combination strategies for cancer treatment. KEY POINTS: Chemotherapy can inhibit B-cell proliferation and alter subset distributions and functions, including factor secretion, receptor signalling, and costimulation. Chemotherapy can modulate complex B-cell-T-cell interactions with variable effects on anti-tumour immunity. Targeting B-cell surface markers or signalling improves chemotherapy responses, blocks immune evasion and inhibits tumour growth. Critical knowledge gaps remain regarding B-cell interactions in TME, B-cell chemoresistance mechanisms, TLS biology, heterogeneity, spatial distributions, chemotherapy drug selection and B-cell targets that future studies should address.


Asunto(s)
Linfocitos B , Neoplasias , Humanos , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
8.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38894375

RESUMEN

Deep learning has shown significant advantages in Automatic Dependent Surveillance-Broadcast (ADS-B) anomaly detection, but it is known for its susceptibility to adversarial examples which make anomaly detection models non-robust. In this study, we propose Time Neighborhood Accumulation Iteration Fast Gradient Sign Method (TNAI-FGSM) adversarial attacks which fully take into account the temporal correlation of an ADS-B time series, stabilize the update directions of adversarial samples, and escape from poor local optimum during the process of iterating. The experimental results show that TNAI-FGSM adversarial attacks can successfully attack ADS-B anomaly detection models and improve the transferability of ADS-B adversarial examples. Moreover, the TNAI-FGSM is superior to two well-known adversarial attacks called the Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM). To the best of our understanding, we demonstrate, for the first time, the vulnerability of deep-learning-based ADS-B time series unsupervised anomaly detection models to adversarial examples, which is a crucial step in safety-critical and cost-critical Air Traffic Management (ATM).

9.
Behav Sci (Basel) ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38920830

RESUMEN

Algorithmic technological progress presents both opportunities and challenges for organizational management. The success of online labor platforms hinges on algorithmic control, making it imperative to explore how this control affects gig workers' prosocial service behaviors. Drawing from affective event theory, our study delves into the factors influencing gig workers' prosocial service behaviors in the online labor platform setting. We utilize the challenge-hindrance appraisal framework to highlight the pivotal role of algorithmic control. To rigorously test our hypotheses, we gathered empirical data from an online questionnaire survey of 660 gig workers. Our results indicate that challenge appraisals and hindrance appraisals in regard to platform algorithm control have a nuanced dual impact on gig workers' prosocial service behaviors. This relationship is clarified by the mediating function of work engagement. A challenge appraisal of platform algorithmic control can positively influence gig workers' prosocial service behaviors. However, hindrance appraisal of platform algorithmic control can negatively influence gig workers' prosocial service behaviors. Interestingly, workplace interpersonal capitalization boosts the effect of challenge appraisal on employees' prosocial service behaviors. However, it does not mitigate the adverse effects of hindrance appraisal on such behaviors. This study has multiple theoretical implications, and it also provides valuable practical insights into organizational management.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38901656
13.
Exp Mol Pathol ; 138: 104910, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876078

RESUMEN

Arsenic (As) is a highly toxic environmental toxicant and a known human carcinogen. Long-term exposure to As can cause liver injury. Dictyophora polysaccharide (DIP) is a biologically active natural compound found in the Dictyophora with excellent antioxidation, anti-inflammation, and immune protection properties. In this study, the Sprague-Dawley (SD) rat model of As toxicity was established using a feeding method, followed by DIP treatment in rats with As-induced liver injury. The molecular mechanisms of As toxicity to the rat liver and the protective effect of DIP were investigated by proteomic studies. The results showed that 172, 328 and 191 differentially expressed proteins (DEPs) were identified between the As-exposed rats versus control rats (As/Ctrl), DIP treated rats versus As-exposed rats (DIP+As/As), and DIP treated rats versus control rats (DIP+As /Ctrl), respectively. Among them, the expression of 90 DEPs in the As/Ctrl groups was reversed by DIP treatment. As exposure caused dysregulation of metabolic pathways, mitochondria, oxidative stress, and apoptosis-related proteins in the rat liver. However, DIP treatment changed or restored the levels of these proteins, which attenuated the damage to the livers of rats caused by As exposure. The results provide new insights into the mechanisms of liver injury induced by As exposure and the treatment of DIP in As poisoning.

14.
Nanoscale ; 16(27): 13171-13182, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38913445

RESUMEN

Rechargeable aluminum ion batteries (RAIBs) exhibit great potential for next-generation energy storage systems owing to the abundant resources, high theoretical volumetric capacity and light weight of the Al metal anode. However, the development of RAIBs based on Al metal anodes faces challenges such as dendrite formation, self-corrosion, and volume expansion at the anode/electrolyte interface, which needs the rational design of an aluminum anode for high-performance RAIBs. This work proposes a novel and low-cost strategy by utilizing an alloy electrodeposition method in a low-temperature molten salt system to fabricate an aluminum-tin (AlSn) alloy coating layer on copper foil as the anode for RAIBs, which successfully addresses the issues of dendrite formation and corrosion at the anode/electrolyte interface. The artificial AlSn alloy layer could enhance the active sites for metal Al homogeneous deposition and effectively retard the dendrite formation, which was verified by an in situ optical microscopy study. The symmetric AlSn@Cu cell demonstrates a low average overpotential of ∼38 mV at a current density of 0.5 mA cm-2 and a long-term lifespan of over 1100 h. Moreover, the AlSn@Cu//Mo6S8 full cells deliver a high capacity of 114.9 mA h g-1 at a current density of 100 mA g-1 and maintain ultra-stable cycling stability even over 1400 cycles with a ∼100% coulombic efficiency (CE) during the long-term charge/discharge processes. This facile alloy electrodeposition approach for designing high-performance Al-based anodes provides insights into the understanding of artificial interface chemistry on Al-based anodes and potentially accelerates the design of high-performance RAIBs.

15.
ACS Appl Mater Interfaces ; 16(27): 34705-34719, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38935462

RESUMEN

Osteoarthritis (OA) is a progressive joint disorder characterized by sustained oxidative stress, chronic inflammation, and the degradation of cartilage. Despite extensive research on nanocarrier treatment strategies, the therapeutic efficacy remains limited due to the lack of satisfactory vehicles that can simultaneously exhibit excellent ROS scavenging capabilities and high drug loading capacity for effective nonsurgical management of OA. In this work, we propose an innovative strategy utilizing hollow mesoporous cerium oxide nanospheres coated with membranes derived from apoptotic chondrocytes as a reactive oxygen species "sweeper" for targeted and anti-inflammatory therapy of OA. The developed DEX@HMCeNs@M demonstrates superior drug loading capacity, notable antioxidant properties, favorable biocompatibility, and controlled drug release. By leveraging the camouflage provided by apoptotic chondrocyte membranes, the engineered DEX@HMCeNs@M, which bear natural "eat me" signals, can effectively mimic chondrocyte apoptotic bodies within the joints, thereby enabling targeted delivery of the anti-inflammatory drug DEX and subsequent controlled release triggered by the acidic environment of OA. Both in vitro and in vivo experiments validate the enhanced therapeutic efficacy of our DEX@HMCeNs@M sweeper, which operates through a synergistic mechanism involving scavenging of ROS overproduction, inhibition of inflammation, restoration of mitochondrial damage, and reduction of chondrocyte apoptosis. These findings underscore the potential and efficiency of our developed DEX@HMCeNs@M strategy as an encouraging interventional approach for the progressive treatment of OA.


Asunto(s)
Antiinflamatorios , Cerio , Condrocitos , Nanosferas , Osteoartritis , Especies Reactivas de Oxígeno , Cerio/química , Cerio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Nanosferas/química , Apoptosis/efectos de los fármacos , Ratones , Humanos , Porosidad , Ratas , Liberación de Fármacos
16.
Bioact Mater ; 38: 455-471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38770426

RESUMEN

Osteosarcoma is the most common malignant bone tumor without efficient management for improving 5-year event-free survival. Immunotherapy is also limited due to its highly immunosuppressive tumor microenvironment (TME). Pore-forming gasdermins (GSDMs)-mediated pyroptosis has gained increasing concern in reshaping TME, however, the expressions and relationships of GSDMs with osteosarcoma remain unclear. Herein, gasdermin E (GSDME) expression is found to be positively correlated with the prognosis and immune infiltration of osteosarcoma patients, and low GSDME expression was observed. A vector termed as LPAD contains abundant hydroxyl groups for hydrating layer formation was then prepared to deliver the GSDME gene to upregulate protein expression in osteosarcoma for efficient TME reshaping via enhanced pyroptosis induction. Atomistic molecular dynamics simulations analysis proved that the hydroxyl groups increased LPAD hydration abilities by enhancing coulombic interaction. The upregulated GSDME expression together with cleaved caspase-3 provided impressive pyroptosis induction. The pyroptosis further initiated proinflammatory cytokines release, increased immune cell infiltration, activated adaptive immune responses and create a favorable immunogenic hot TME. The study not only confirms the role of GSDME in the immune infiltration and prognosis of osteosarcoma, but also provides a promising strategy for the inhibition of osteosarcoma by pore-forming GSDME gene delivery induced enhanced pyroptosis to reshape the TME of osteosarcoma.

17.
Cell Prolif ; : e13680, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817099

RESUMEN

Leydig cell failure (LCF) caused by gene mutations leads to testosterone deficiency, infertility and reduced physical function. Adeno-associated virus serotype 8 (AAV8)-mediated gene therapy shows potential in treating LCF in the Lhcgr-deficient (Lhcgr-/-) mouse model. However, the gene-treated mice still cannot naturally sire offspring, indicating the modestly restored testosterone and spermatogenesis in AAV8-treated mice remain insufficient to support natural fertility. Recognizing this, we propose that enhancing gene delivery could yield superior results. Here, we screened a panel of AAV serotypes through in vivo transduction of mouse testes and identified AAVDJ as an impressively potent vector for testicular cells. Intratesticular injection of AAVDJ achieved markedly efficient transduction of Leydig cell progenitors, marking a considerable advance over conventional AAV8 vectors. AAVDJ-Lhcgr gene therapy was well tolerated and resulted in significant recovery of testosterone production, substantial improvement in sexual development, and remarkable restoration of spermatogenesis in Lhcgr-/- mice. Notably, this therapy restored fertility in Lhcgr-/- mice through natural mating, enabling the birth of second-generation. Additionally, this treatment led to remarkable improvements in adipose, muscle, and bone function in Lhcgr-/- mice. Collectively, our findings underscore AAVDJ-mediated gene therapy as a promising strategy for LCF and suggest its broader potential in addressing various reproductive disorders.

18.
MedComm (2020) ; 5(6): e564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807975

RESUMEN

Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.

19.
PLoS Comput Biol ; 20(5): e1012024, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717988

RESUMEN

The activation levels of biologically significant gene sets are emerging tumor molecular markers and play an irreplaceable role in the tumor research field; however, web-based tools for prognostic analyses using it as a tumor molecular marker remain scarce. We developed a web-based tool PESSA for survival analysis using gene set activation levels. All data analyses were implemented via R. Activation levels of The Molecular Signatures Database (MSigDB) gene sets were assessed using the single sample gene set enrichment analysis (ssGSEA) method based on data from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), The European Genome-phenome Archive (EGA) and supplementary tables of articles. PESSA was used to perform median and optimal cut-off dichotomous grouping of ssGSEA scores for each dataset, relying on the survival and survminer packages for survival analysis and visualisation. PESSA is an open-access web tool for visualizing the results of tumor prognostic analyses using gene set activation levels. A total of 238 datasets from the GEO, TCGA, EGA, and supplementary tables of articles; covering 51 cancer types and 13 survival outcome types; and 13,434 tumor-related gene sets are obtained from MSigDB for pre-grouping. Users can obtain the results, including Kaplan-Meier analyses based on the median and optimal cut-off values and accompanying visualization plots and the Cox regression analyses of dichotomous and continuous variables, by selecting the gene set markers of interest. PESSA (https://smuonco.shinyapps.io/PESSA/ OR http://robinl-lab.com/PESSA) is a large-scale web-based tumor survival analysis tool covering a large amount of data that creatively uses predefined gene set activation levels as molecular markers of tumors.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Bases de Datos Genéticas , Internet , Neoplasias , Programas Informáticos , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Análisis de Supervivencia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Pronóstico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA