Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dis Model Mech ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38966981

RESUMEN

Inherited retinal diseases encompass a genetically diverse group of conditions caused by variants in genes critical to retinal function, including handful of ribosome-associated genes. This study focuses on the HBS1L gene, which encodes for the HBS1-like translational GTPase that is crucial for ribosomal rescue. We have reported a female child carrying biallelic HBS1L variants, manifesting with poor growth and neurodevelopmental delay. Here, we describe the ophthalmologic findings in the patient and in Hbs1ltm1a/tm1a hypomorph mice and describe the associated microscopic and molecular perturbations. The patient has impaired visual function, showing dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound thinning of the entire retina, specifically of the outer photoreceptor layer, due to extensive photoreceptor cell apoptosis. Loss of Hbs1l resulted in comprehensive proteomic alterations by mass spectrometry analysis, with an increase in the levels of 169 proteins and a decrease in the levels of 480 proteins, including rhodopsin (Rho) and peripherin 2 (Prph2). Gene Ontology biological process and gene set enrichment analyses reveal that the downregulated proteins are primarily involved in phototransduction, cilium assembly and photoreceptor cell development. These findings underscore the importance of ribosomal rescue proteins in maintaining retinal health, particularly in photoreceptor cells.


Asunto(s)
Modelos Animales de Enfermedad , Distrofias Retinianas , Animales , Distrofias Retinianas/patología , Distrofias Retinianas/genética , Femenino , Humanos , Ratones , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Apoptosis , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Niño
2.
Poult Sci ; 103(9): 104040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39043028

RESUMEN

The H9N2 subtype of the avian influenza virus (AIV) is widely prevalent in birds, threatening the poultry industry and providing genetic material for emerging human pathogens. The prevalence and genetic characteristics of H9N2 in Yunnan Province, China, are largely unknown. Samples were collected from live poultry markets (LPMs) and breeding farms in Yunnan Province. H9N2-positive samples were identified by polymerase chain reaction (PCR), with a high positivity rate of 42.86% in tissue samples. The positivity rate of swab samples in the LPMs in Kunming was 3.97% (17/564), but no AIV was detected in samples from poultry farms in Lijiang, Wenshan, and Yuxi. Evolutionary analysis and genotyping were performed for the 17 strains of isolated H9N2 virus. Phylogenetic analysis revealed that all H9N2 viral genes had 91.6%-100% nucleotide homology, belonged to the G57 genotype, and had high homology with H9N2 viruses isolated from Guangdong and Guangxi, suggesting that the H9N2 viruses in Yunnan Province may have been imported by chicks. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to evolve. The surface genes of the H9N2 isolates displayed substantial genetic diversity, highlighting the genetic diversity and complexity of the H9N2-subtype AIVs in Yunnan. Molecular analysis demonstrated that all 17 strains of H9N2 isolates had mutations at H183N, Q226L, L31P, and I268V in hemagglutinin; S31N in matrix protein 2; and no replacements at positions 274 and 292 of the neuraminidase protein. Sixteen strains had the A558V mutation and one strain had the E627V mutation in polymerase basic protein 2. Analysis of these amino acid sites suggests that H9N2 influenza viruses in Yunnan continue to mutate and adapt to mammals and are sensitive to neuraminidase inhibitors but resistant to adamantanes. It is necessary to strengthen surveillance of AIV H9N2 subtypes in poultry and LPMs in Yunnan to further understand their genetic diversity.


Asunto(s)
Pollos , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Filogenia , Enfermedades de las Aves de Corral , Animales , Subtipo H9N2 del Virus de la Influenza A/genética , China/epidemiología , Gripe Aviar/virología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Variación Genética , Genotipo
3.
J Neural Eng ; 21(4)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38925110

RESUMEN

Objective.Speech brain-computer interfaces (BCIs) have the potential to augment communication in individuals with impaired speech due to muscle weakness, for example in amyotrophic lateral sclerosis (ALS) and other neurological disorders. However, to achieve long-term, reliable use of a speech BCI, it is essential for speech-related neural signal changes to be stable over long periods of time. Here we study, for the first time, the stability of speech-related electrocorticographic (ECoG) signals recorded from a chronically implanted ECoG BCI over a 12 month period.Approach.ECoG signals were recorded by an ECoG array implanted over the ventral sensorimotor cortex in a clinical trial participant with ALS. Because ECoG-based speech decoding has most often relied on broadband high gamma (HG) signal changes relative to baseline (non-speech) conditions, we studied longitudinal changes of HG band power at baseline and during speech, and we compared these with residual high frequency noise levels at baseline. Stability was further assessed by longitudinal measurements of signal-to-noise ratio, activation ratio, and peak speech-related HG response magnitude (HG response peaks). Lastly, we analyzed the stability of the event-related HG power changes (HG responses) for individual syllables at each electrode.Main Results.We found that speech-related ECoG signal responses were stable over a range of syllables activating different articulators for the first year after implantation.Significance.Together, our results indicate that ECoG can be a stable recording modality for long-term speech BCI systems for those living with severe paralysis.Clinical Trial Information.ClinicalTrials.gov, registration number NCT03567213.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Electrocorticografía , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Estudios Longitudinales , Electrocorticografía/métodos , Habla/fisiología , Masculino , Ritmo Gamma/fisiología , Persona de Mediana Edad , Femenino , Electrodos Implantados
4.
Clin Chim Acta ; 561: 119765, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852790

RESUMEN

BACKGROUND AND AIMS: Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS: Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS: We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION: The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Homocigoto , Mutación , Transportadores de Sulfato , Humanos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Femenino , Masculino , Antiportadores/genética , Antiportadores/química , Animales , Ratones
5.
J Cachexia Sarcopenia Muscle ; 15(3): 1003-1015, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725372

RESUMEN

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.


Asunto(s)
Proteínas Musculares , Músculo Esquelético , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Ratones Noqueados , Multiómica , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Quinasa de Cadena Ligera de Miosina , Fosforilación , Proteómica/métodos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
6.
J Hazard Mater ; 472: 134581, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743972

RESUMEN

Microplastics (MPs) and antibiotic resistance genes (ARGs) are two types of contaminants that are widely present in the soil environment. MPs can act as carriers of microbes, facilitating the colonization and spread of ARGs and thus posing potential hazards to ecosystem safety and human health. In the present study, we explored the microbial networks and ARG distribution characteristics in different soil types (heavy metal (HM)-contaminated soil and agricultural soil planted with different plants: Bidens pilosa L., Ipomoea aquatica F., and Brassica chinensis L.) after the application of MPs and evaluated environmental factors, potential microbial hosts, and ARGs. The microbial communities in the three rhizosphere soils were closely related to each other, and the modularity of the microbial networks was greater than 0.4. Moreover, the core taxa in the microbial networks, including Actinobacteriota, Proteobacteria, and Myxococcota, were important for resisting environmental stress. The ARG resistance mechanisms were dominated by antibiotic efflux in all three rhizosphere soils. Based on the annotation results, the MP treatments induced changes in the relative abundance of microbes carrying ARGs, and the G1-5 treatment significantly increased the abundance of MuxB in Verrucomicrobia, Elusimicrobia, Actinobacteria, Planctomycetes, and Acidobacteria. Path analysis showed that changes in MP particle size and dosage may indirectly affect soil enzyme activities by changing pH, which affects microbes and ARGs. We suggest that MPs may provide surfaces for ARG accumulation, leading to ARG enrichment in plants. In conclusion, our results demonstrate that MPs, as potentially persistent pollutants, can affect different types of soil environments and that the presence of ARGs may cause substantial environmental risks.


Asunto(s)
Farmacorresistencia Microbiana , Ipomoea , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Ipomoea/genética , Ipomoea/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Rizosfera , Polietileno , Genes Bacterianos/efectos de los fármacos , Brassica/genética , Brassica/efectos de los fármacos , Brassica/microbiología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Suelo/química , Metales Pesados/toxicidad , Microbiota/efectos de los fármacos
7.
Sci Rep ; 14(1): 9617, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671062

RESUMEN

Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage approach reported here relies on recurrent neural networks to identify, decode and synthesize speech from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the participant from a vocabulary of 6 keywords previously used for decoding commands to control a communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% of the words can be correctly recognized by human listeners. Our results show that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while preserving the participant's voice profile, and provide further evidence for the stability of ECoG for speech-based BCIs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/terapia , Masculino , Habla/fisiología , Persona de Mediana Edad , Electrodos Implantados , Electrocorticografía
8.
Angiology ; 75(5): 441-453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36788038

RESUMEN

Numerous studies have shown that a low level of high-density lipoprotein cholesterol (HDL-C) is an independent biomarker of cardiovascular disease. High-density lipoprotein (HDL) is considered to be a protective factor for atherosclerosis (AS). Therefore, raising HDL-C has been widely recognized as a promising strategy to treat atherosclerotic cardiovascular diseases (ASCVD). However, several studies have found that increasing HDL-C levels does not necessarily reduce the risk of ASCVD. HDL particles are highly heterogeneous in structure, composition, and biological function. Moreover, HDL particles from atherosclerotic patients exhibit impaired anti-atherogenic functions and these dysfunctional HDL particles might even promote ASCVD. This makes it uncertain that HDL-raising therapy will prevent and treat ASCVD. It is necessary to comprehensively analyze the structure and function of HDL subfractions. We review current advances related to HDL subfractions remodeling and highlight how current lipid-modifying drugs such as niacin, statins, fibrates, and cholesteryl ester transfer protein inhibitors regulate cholesterol concentration of HDL and specific HDL subfractions.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Enfermedades Cardiovasculares/prevención & control , Lipoproteínas HDL , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Colesterol , HDL-Colesterol , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control
9.
Microorganisms ; 11(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38004643

RESUMEN

Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.

10.
J Environ Manage ; 348: 119206, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37898049

RESUMEN

Improving environmental performance of energy- and carbon-intensive sectors represented by the iron and steel (IS) industry is of utmost importance to address the challenges of resource depletion and climate change worldwide. This article adopts a global-super-Epsilon-Based Measure (EBM) model with undesirable output for IS energy efficiency estimation, identifies efficiency determinants based on Technology-Organization-Environment (TOE) framework, and analyzes various pathways for efficiency improvement by grouping Necessary Condition Analysis (NCA) and fuzzy-set Qualitative Comparative Analysis (fsQCA). Empirical testing using statistical data of the G20 economies during 2010-2020 demonstrates that: 1) energy efficiency in the IS industry in G20 countries has risen amidst fluctuations, with developed countries performing more efficiently than developing countries; 2) individual factors do not constitute a compulsory condition to achieve high energy efficiency in the IS industry; 3) three different paths to achieve high energy performance are found, that is, technology-structure driven, regulation-economy-technology driven, and regulation-technology-production driven. Heterogenous policy recommendations for efficiency gains in the IS sector of different countries with divergent features are proposed accordingly.


Asunto(s)
Carbono , Conservación de los Recursos Energéticos , Carbono/análisis , Acero , Hierro , Cambio Climático , Eficiencia , China , Desarrollo Económico , Dióxido de Carbono/análisis
11.
Res Sq ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37841873

RESUMEN

Background: Brain-computer interfaces (BCIs) can restore communication in movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command "click" decoders provide a basic yet highly functional capability. Methods: We sought to test the performance and long-term stability of click-decoding using a chronically implanted high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human clinical trial participant (ClinicalTrials.gov, NCT03567213) with amyotrophic lateral sclerosis (ALS). We trained the participant's click decoder using a small amount of training data (< 44 minutes across four days) collected up to 21 days prior to BCI use, and then tested it over a period of 90 days without any retraining or updating. Results: Using this click decoder to navigate a switch-scanning spelling interface, the study participant was able to maintain a median spelling rate of 10.2 characters per min. Though a transient reduction in signal power modulation interrupted testing with this fixed model, a new click decoder achieved comparable performance despite being trained with even less data (< 15 min, within one day). Conclusion: These results demonstrate that a click decoder can be trained with a small ECoG dataset while retaining robust performance for extended periods, providing functional text-based communication to BCI users.

12.
Adv Sci (Weinh) ; 10(35): e2304853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875404

RESUMEN

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex. Speech commands are accurately detected and decoded (median accuracy: 90.59%) throughout a 3-month study period without model retraining or recalibration. Use of the BCI does not require exogenous timing cues, enabling the participant to issue self-paced commands at will. These results demonstrate that a chronically implanted ECoG-based speech BCI can reliably control assistive devices over long time periods with only initial model training and calibration, supporting the feasibility of unassisted home use.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Humanos , Habla , Esclerosis Amiotrófica Lateral/complicaciones , Electrocorticografía
13.
Sci Adv ; 9(40): eadh0183, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801508

RESUMEN

Spinal cord injury (SCI) often leads to physical limitations, persistent pain, and major lifestyle shifts, enhancing the likelihood of prolonged psychological stress and associated disorders such as anxiety and depression. The mechanisms linking stress with regeneration remain elusive, despite understanding the detrimental impact of chronic stress on SCI recovery. In this study, we investigated the effect of chronic stress on primary sensory axon regeneration using a preconditioning lesions mouse model. Our data revealed that chronic stress-induced mitochondrial cristae loss and a decrease in oxidative phosphorylation (OXPHOS) within primary sensory neurons, impeding central axon regrowth. Corticosterone, a stress hormone, emerged as a pivotal player in this process, affecting satellite glial cells by reducing Kir4.1 expression. This led to increased neuronal hyperactivity and reactive oxygen species levels, which, in turn, deformed mitochondrial cristae and impaired OXPHOS, crucial for axonal regeneration. Our study underscores the need to manage psychological stress in patients with SCI for effective sensory-motor rehabilitation.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Axones/metabolismo , Regeneración Nerviosa/fisiología , Fosforilación Oxidativa , Neuronas/metabolismo , Traumatismos de la Médula Espinal/patología
14.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37905068

RESUMEN

Inherited retinal diseases (IRDs) encompass a genetically diverse group of conditions in which mutations in genes critical to retinal function lead to progressive loss of photoreceptor cells and subsequent visual impairment. A handful of ribosome-associated genes have been implicated in retinal disorders alongside neurological phenotypes. This study focuses on the HBS1L gene, encoding HBS1 Like Translational GTPase which has been recognized as a critical ribosomal rescue factor. Previously, we have reported a female child carrying biallelic HBS1L mutations, manifesting growth restriction, developmental delay, and hypotonia. In this study, we describe her ophthalmologic findings, compare them with the Hbs1ltm1a/tm1a hypomorph mouse model, and evaluate the underlying microscopic and molecular perturbations. The patient was noted to have impaired visual function observed by electroretinogram (ERG), with dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound retinal thinning of the entire retina, specifically of the outer retinal photoreceptor layer, detected using in vivo imaging of optical coherence tomography (OCT) and retinal cross sections. TUNEL assay revealed retinal degeneration due to extensive photoreceptor cell apoptosis. Loss of HBS1L resulted in comprehensive proteomic alterations in mass spectrometry analysis, with169 proteins increased and 480 proteins decreased including many critical IRD-related proteins. GO biological process and GSEA analyses reveal that these downregulated proteins are primarily involved in photoreceptor cell development, cilium assembly, phototransduction, and aerobic respiration. Furthermore, apart from the diminished level of PELO, a known partner protein, HBS1L depletion was accompanied by reduction in translation machinery associated 7 homolog (Tma7), and Endothelial differentiation-related factor 1(Edf1) proteins, the latter of which coordinates cellular responses to ribosome collisions. This novel connection between HBS1L and ribosome collision sensor (EDF1) further highlights the intricate mechanisms underpinning ribosomal rescue and quality control that are essential to maintain homeostasis of key proteins of retinal health, such as rhodopsin.

15.
Environ Pollut ; 336: 122513, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673320

RESUMEN

Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.


Asunto(s)
Cadmio , Enterobacter , Cadmio/toxicidad , Cadmio/metabolismo , Enterobacter/metabolismo , Proteómica , Estrés Oxidativo , Biodegradación Ambiental
16.
J Environ Manage ; 345: 118766, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579601

RESUMEN

Soil deficiency, cyclic erosion, and heavy metal pollution have led to fertility loss and ecological function decline in mining areas. Fertilization is an important way to rapidly replenish soil nutrients, which have a major influence on the soil nitrogen cycling process, but different fertilization regimes have different impacts on soil properties and microbial functional potentials. Here, metagenomic sequencing was used to investigate the different responses of key functional genes of microbial nitrogen cycling to fertilization regimes and explore the potential effects of soil physicochemical properties on the key functional genes. The results indicated that AC-HH (ammonium chloride-high frequency and concentration) treatment significantly increased the gene abundance of norC (13.40-fold), nirK (5.46-fold), and napA (5.37-fold). U-HH (urea-high frequency and concentration) treatment significantly increased the gene abundance of hao (6.24-fold), pmoA-amoA (4.32-fold) norC (7.00-fold), nosZ (3.69-fold), and nirK (6.88-fold). Functional genes were distributed differently among the 10 dominant phyla. The nifH and nifK genes were distributed only in Proteobacteria. The hao gene was distributed in Gemmatimonadetes, Nitrospirae and Proteobacteria. Fertilization regimes caused changes in functional redundancy in soil, and nirK and nirB, which are involved in denitrification, were present in different genera. Fertilization regimes with high frequency and high concentration were more likely to increase the gene abundance at the genus level. In summary, this study provides insights into the taxon-specific response of soil nitrogen cycling under different fertilization regimes, where changes in fertilization regimes affect microbial nitrogen cycling by altering soil physicochemical properties in a complex dynamic environment.


Asunto(s)
Metagenómica , Suelo , Suelo/química , Microbiología del Suelo , Bacterias/genética , Fertilización , Nitrógeno
17.
J Sep Sci ; 46(19): e2300172, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37528737

RESUMEN

Chrysanthemum morifolium cv. Fubaiju is rich in phenolic compounds with various benefits such as anti-inflammatory, antioxidant, and cardiovascular protection. In this study, 12 phenolic compounds, including five flavonoid glycosides and seven quinic acid derivatives, were successfully separated from the flowers of Chrysanthemum morifolium cv. Fubaiju by high-speed counter-current chromatography and preparative high-performance liquid chromatography. Ethyl acetate-n-butanol-acetonitrile-water-acetic acid (5:0.5:2.5:5:0.25, v/v/v/v/v) was selected as solvent system to separate six fractions from the flowers of Chrysanthemum morifolium cv. Fubaiju, and 20% aqueous acetonitrile (containing 0.1% formic acid) was chosen to be the elution solvent in preparative high-performance liquid chromatography for purifying the fractions above. Luteolin-7-O-ß-D-glucoside (1), luteolin-7-O-ß-D-glucuronide (2), apigenin-7-O-ß-D-glucoside (3), luteolin-7-O-ß-D-rutinoside (4), diosmetin-7-O-ß-D-glucoside (5), chlorogenic acid (6), 1,5-dicaffeoylquinic acid (7), 1,4-dicaffeoylquinic acid (8), 3,4-dicaffeoylquinic acid (9), 3,4-dicaffeoyl-epi-quinic acid (10), 3,5-dicaffeoylquinic acid (11), and 4,5-dicaffeoylquinic acid (12) were isolated with purities all above 95%, respectively. In addition, all isolates were evaluated for their protective effects on H2 O2 -induced oxidative damage in adult retinal pigment epithelial cells.

18.
medRxiv ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37425721

RESUMEN

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS). We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the user from a vocabulary of 6 keywords originally designed to allow intuitive selection of items on a communication board. Our results show for the first time that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words that are intelligible to human listeners while preserving the participants voice profile.

19.
J Hazard Mater ; 458: 132033, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453352

RESUMEN

Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.


Asunto(s)
Bidens , Metales Pesados , Contaminantes del Suelo , Rizosfera , Suelo/química , Enterobacter/metabolismo , Metagenómica , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Biodegradación Ambiental , Metabolómica , Microbiología del Suelo , Cadmio/análisis
20.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162921

RESUMEN

Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy. Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes. We identified that SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and SPEG deficiency results in myospryn complex abnormalities. In addition, transcriptional and protein profiles of SPEG-deficient muscle revealed defective mitochondrial function including aberrant accumulation of enlarged mitochondria on electron microscopy. Furthermore, SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites. On analyzing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction and peroxisome proliferator-activated receptors signaling, which may be due to defective triad and mitochondrial abnormalities. In summary, we have elucidated the critical role of SPEG in triad as it works closely with myospryn complex, phosphorylates JPH2 and RyR1, and demonstrated that its deficiency is associated with mitochondrial abnormalities. This study emphasizes the importance of using multi-omics techniques to comprehensively analyze the molecular anomalies of rare diseases. Synopsis: We have previously linked mutations in SPEG (striated preferentially expressed protein) with a recessive form of centronuclear myopathy and/or dilated cardiomyopathy and have characterized a striated muscle-specific SPEG-deficient mouse model that recapitulates human disease with disruption of the triad structure and calcium homeostasis in skeletal muscles. In this study, we applied multi-omics approaches (interactomic, proteomic, phosphoproteomic, and transcriptomic analyses) in the skeletal muscles of SPEG-deficient mice to assess the underlying pathways associated with the pathological and molecular abnormalities. SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and its deficiency results in myospryn complex abnormalities.SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites.SPEGα and SPEGß have different interacting partners suggestive of differential function.Transcriptome analysis indicates dysregulated pathways of ECM-receptor interaction and peroxisome proliferator-activated receptor signaling.Mitochondrial defects on the transcriptome, proteome, and electron microscopy, may be a consequence of defective calcium signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA