Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1373660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835656

RESUMEN

Alzheimer's disease (AD) is a complicated neurodegenerative condition with two forms: familial and sporadic. The familial presentation is marked by autosomal dominance, typically occurring early in individuals under 65 years of age, while the sporadic presentation is late-onset, occurring in individuals over the age of 65. The majority of AD cases are characterized by late-onset and sporadic. Despite extensive research conducted over several decades, there is a scarcity of effective therapies and strategies. Considering the lack of a cure for AD, it is essential to explore alternative natural substances with higher efficacy and fewer side effects for AD treatment. Bioactive compounds derived from mushrooms have demonstrated significant potential in AD prevention and treatment by different mechanisms such as targeting amyloid formation, tau, cholinesterase dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, neurotrophic factors, ER stress, excitotoxicity, and mitochondrial dysfunction. These compounds have garnered considerable interest from the academic community owing to their advantages of multi-channel, multi-target, high safety and low toxicity. This review focuses on the various mechanisms involved in the development and progression of AD, presents the regulatory effects of bioactive components with definite structure from mushroom on AD in recent years, highlights the possible intervention pathways of mushroom bioactive components targeting different mechanisms, and discusses the clinical studies, limitations, and future perspectives of mushroom bioactive components in AD prevention and treatment.

2.
Nanomedicine (Lond) ; 18(15): 1025-1039, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37584613

RESUMEN

Cancer-associated fibroblasts (CAFs) are the most common cells in the tumor stroma and are essential for tumor development and metastasis. While decreasing the release and infiltration of nanomedicine through nonspecific internalization, CAFs specifically increase solid tumor pressure and interstitial fluid pressure by secreting tumor growth- and migration-promoting cytokines, which increases vascular and organ pressure caused by solid tumor pressure. Nanoparticles have good permeability and can penetrate tumor tissue to reach the lesion area, inhibiting tumor growth. Thus, CAFs are used as modifiable targets. Here, the authors review the biological functions, origins and biomarkers of CAFs and summarize strategies for modulating CAFs in nanodelivery systems. This study provides a prospective guide to modulating CAFs to enhance oncology treatment.


Cancer-associated fibroblasts (CAFs) participate in the growth and metastasis of cancer and also suppress the penetration of antitumor drugs into the deep tumor tissue. Therefore, many researchers have sought to improve the therapeutic efficacy of nanomedicine through the regulation of CAFs. Some nanoparticles that can precisely target CAFs can slow their growth while also assisting the immune system in fighting cancer cells and releasing pressure within the tumor. These nanoparticles may pass through tumors and inhibit the growth of cancer cells. Therefore, the modulation of CAFs with nanomedicines to enhance tumor therapy is essential.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Citocinas , Microambiente Tumoral , Fibroblastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA