Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
iScience ; 27(7): 110162, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027374

RESUMEN

Biomarkers for monitoring COVID-19 disease course are lacking. Study aim was to identify biomarkers associated with disease severity, survival, long-term outcome, and Long COVID. As excessive macrophages activation is a hallmark of COVID-19 and complement activation is key in this, we selected the following proteins involved in these processes: PTX3, C1q, C1-INH, C1s/C1-INH, and sMR. EDTA-plasma concentrations were measured in 215 patients and 47 controls using ELISA. PTX3, sMR, C1-INH, and C1s/C1-INH levels were associated with disease severity. PTX3 and sMR were also associated with survival and long-term immune recovery. Lastly, sMR levels associate with ICU admittance. sMR (AUC 0.85) and PTX3 (AUC 0.78) are good markers for disease severity, especially when used in combination (AUC 0.88). No association between biomarker levels and Long COVID was observed. sMR has not previously been associated with COVID-19 disease severity, ICU admittance or survival and may serve as marker for disease course.

2.
Cardiovasc Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073768

RESUMEN

AIMS: While acute cardiovascular complications of COVID-19 are well-described, less is known about longer-term cardiac sequelae. For many individuals with cardiac signs or symptoms arising after COVID-19 infection, the aetiology remains unclear. We examined immune profiles associated with magnetic resonance imaging (MRI) abnormalities in patients with unexplained cardiac injury after COVID-19. METHODS AND RESULTS: Twenty-one participants (mean age 47 [SD 13] years, 71% female) with long COVID (n=17), raised troponin (n=2), or unexplained new-onset heart failure (n=2), who did not have pre-existing heart conditions or recent steroid/immunosuppression treatment were enrolled a mean 346 (SD 191) days after COVID-19 infection in a prospective observational study. Cardiac MRI and blood sampling for deep immunophenotyping using mass cytometry by time of flight and measurement of proteomic inflammatory markers was performed. Nine of 21 (43%) participants had MRI abnormalities (MRI(+)), including non-ischaemic patterns of late gadolinium enhancement and/or visually overt myocardial oedema in 8 people. One patient had mildly impaired biventricular function without fibrosis or oedema, and 2 had severe left ventricular impairment. MRI(+) individuals had higher blood CCL3, CCL7, FGF-23 and CD4 Th2 cells, and lower CD8 T effector memory (TEM) cells, than MRI(-). Cluster analysis revealed lower expression of inhibitory receptors PD1 and TIM3 in CD8 TEM cells from MRI(+) patients than MRI(-) patients, and functional studies of CD8 T αß cells showed higher proportions of cytotoxic granzyme B+ secreting cells upon stimulation. CD8 TEM cells and CCL7 were the strongest predictors of MRI abnormalities in a LASSO regression model (composite AUC 0.96, 95%CI 0.88-1.0). CCL7 was correlated with diffuse myocardial fibrosis/oedema detected by quantitative T1 mapping (r=0.47, p=0.04). CONCLUSION: COVID-19 related cardiac injury in symptomatic patients with non-ischaemic myocarditis-like MRI abnormalities is associated with immune dysregulation, including decreased peripheral CD8 TEM cells and increased CCL7, persisting long after the initial infection.

3.
Sci Immunol ; 9(95): eade2094, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787961

RESUMEN

Immunotherapy advances have been hindered by difficulties in tracking the behaviors of lymphocytes after antigen signaling. Here, we assessed the behavior of T cells active within tumors through the development of the antigen receptor signaling reporter (AgRSR) mouse, fate-mapping lymphocytes responding to antigens at specific times and locations. Contrary to reports describing the ready egress of T cells out of the tumor, we find that intratumoral antigen signaling traps CD8+ T cells in the tumor. These clonal populations expand and become increasingly exhausted over time. By contrast, antigen-signaled regulatory T cell (Treg) clonal populations readily recirculate out of the tumor. Consequently, intratumoral antigen signaling acts as a gatekeeper to compartmentalize CD8+ T cell responses, even within the same clonotype, thus enabling exhausted T cells to remain confined to a specific tumor tissue site.


Asunto(s)
Linfocitos T CD8-positivos , Transducción de Señal , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Antígenos de Neoplasias/inmunología , Neoplasias/inmunología
4.
Nat Immunol ; 25(3): 471-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429458

RESUMEN

Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.


Asunto(s)
COVID-19 , Hierro , Humanos , Eritropoyesis , SARS-CoV-2 , Investigadores , Progresión de la Enfermedad
5.
Sci Adv ; 10(8): eadi9379, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381822

RESUMEN

After acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a proportion of patients experience persistent symptoms beyond 12 weeks, termed Long Covid. Understanding the mechanisms that cause this debilitating disease and identifying biomarkers for diagnostic, therapeutic, and monitoring purposes are urgently required. We detected persistently high levels of interferon-γ (IFN-γ) from peripheral blood mononuclear cells of patients with Long Covid using highly sensitive FluoroSpot assays. This IFN-γ release was seen in the absence of ex vivo peptide stimulation and remains persistently elevated in patients with Long Covid, unlike the resolution seen in patients recovering from acute SARS-CoV-2 infection. The IFN-γ release was CD8+ T cell-mediated and dependent on antigen presentation by CD14+ cells. Longitudinal follow-up of our study cohort showed that symptom improvement and resolution correlated with a decrease in IFN-γ production to baseline levels. Our study highlights a potential mechanism underlying Long Covid, enabling the search for biomarkers and therapeutics in patients with Long Covid.


Asunto(s)
COVID-19 , Interferón gamma , Humanos , Biomarcadores , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Síndrome Post Agudo de COVID-19 , SARS-CoV-2
6.
Lancet Gastroenterol Hepatol ; 9(5): 415-427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402895

RESUMEN

BACKGROUND: Management strategies and clinical outcomes vary substantially in patients newly diagnosed with Crohn's disease. We evaluated the use of a putative prognostic biomarker to guide therapy by assessing outcomes in patients randomised to either top-down (ie, early combined immunosuppression with infliximab and immunomodulator) or accelerated step-up (conventional) treatment strategies. METHODS: PROFILE (PRedicting Outcomes For Crohn's disease using a moLecular biomarker) was a multicentre, open-label, biomarker-stratified, randomised controlled trial that enrolled adults with newly diagnosed active Crohn's disease (Harvey-Bradshaw Index ≥7, either elevated C-reactive protein or faecal calprotectin or both, and endoscopic evidence of active inflammation). Potential participants had blood drawn to be tested for a prognostic biomarker derived from T-cell transcriptional signatures (PredictSURE-IBD assay). Following testing, patients were randomly assigned, via a secure online platform, to top-down or accelerated step-up treatment stratified by biomarker subgroup (IBDhi or IBDlo), endoscopic inflammation (mild, moderate, or severe), and extent (colonic or other). Blinding to biomarker status was maintained throughout the trial. The primary endpoint was sustained steroid-free and surgery-free remission to week 48. Remission was defined by a composite of symptoms and inflammatory markers at all visits. Flare required active symptoms (HBI ≥5) plus raised inflammatory markers (CRP >upper limit of normal or faecal calprotectin ≥200 µg/g, or both), while remission was the converse-ie, quiescent symptoms (HBI <5) or resolved inflammatory markers (both CRP ≤ the upper limit of normal and calprotectin <200 µg/g) or both. Analyses were done in the full analysis (intention-to-treat) population. The trial has completed and is registered (ISRCTN11808228). FINDINGS: Between Dec 29, 2017, and Jan 5, 2022, 386 patients (mean age 33·6 years [SD 13·2]; 179 [46%] female, 207 [54%] male) were randomised: 193 to the top-down group and 193 to the accelerated step-up group. Median time from diagnosis to trial enrolment was 12 days (range 0-191). Primary outcome data were available for 379 participants (189 in the top-down group; 190 in the accelerated step-up group). There was no biomarker-treatment interaction effect (absolute difference 1 percentage points, 95% CI -15 to 15; p=0·944). Sustained steroid-free and surgery-free remission was significantly more frequent in the top-down group than in the accelerated step-up group (149 [79%] of 189 patients vs 29 [15%] of 190 patients, absolute difference 64 percentage points, 95% CI 57 to 72; p<0·0001). There were fewer adverse events (including disease flares) and serious adverse events in the top-down group than in the accelerated step-up group (adverse events: 168 vs 315; serious adverse events: 15 vs 42), with fewer complications requiring abdominal surgery (one vs ten) and no difference in serious infections (three vs eight). INTERPRETATION: Top-down treatment with combination infliximab plus immunomodulator achieved substantially better outcomes at 1 year than accelerated step-up treatment. The biomarker did not show clinical utility. Top-down treatment should be considered standard of care for patients with newly diagnosed active Crohn's disease. FUNDING: Wellcome and PredictImmune Ltd.


Asunto(s)
Enfermedad de Crohn , Adulto , Humanos , Masculino , Femenino , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/complicaciones , Infliximab/uso terapéutico , Azatioprina/uso terapéutico , Biomarcadores , Factores Inmunológicos/uso terapéutico , Inflamación , Complejo de Antígeno L1 de Leucocito
7.
JCI Insight ; 9(5)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329807

RESUMEN

Inappropriate immune activity is key in the pathogenesis of multiple diseases, and it is typically driven by excess inflammation and/or autoimmunity. IL-1 is often the effector owing to its powerful role in both innate and adaptive immunity, and, thus, it is tightly controlled at multiple levels. IL-1R2 antagonizes IL-1, but effects of losing this regulation are unknown. We found that IL-1R2 resolves inflammation by rapidly scavenging free IL-1. Specific IL-1R2 loss in germinal center (GC) T follicular regulatory (Tfr) cells increased the GC response after a first, but not booster, immunization, with an increase in T follicular helper (Tfh) cells, GC B cells, and antigen-specific antibodies, which was reversed upon IL-1 blockade. However, IL-1 signaling is not obligate for GC reactions, as WT and Il1r1-/- mice showed equivalent phenotypes, suggesting that GC IL-1 is normally restrained by IL-1R2. Fascinatingly, germline Il1r2-/- mice did not show this phenotype, but conditional Il1r2 deletion in adulthood recapitulated it, implying that compensation during development counteracts IL-1R2 loss. Finally, patients with ulcerative colitis or Crohn's disease had lower serum IL-1R2. All together, we show that IL-1R2 controls important aspects of innate and adaptive immunity and that IL-1R2 level may contribute to human disease propensity and/or progression.


Asunto(s)
Receptores Tipo II de Interleucina-1 , Linfocitos T Colaboradores-Inductores , Humanos , Animales , Ratones , Centro Germinal , Inflamación , Interleucina-1
8.
J Autoimmun ; 142: 103133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931331

RESUMEN

B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-ß (IKKß, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Linfocitos B/metabolismo , Quinasa de Factor Nuclear kappa B , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/metabolismo
9.
Cardiovasc Res ; 120(2): 174-187, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38041432

RESUMEN

AIMS: Cardiac involvement is common in patients hospitalized with COVID-19 and correlates with an adverse disease trajectory. While cardiac injury has been attributed to direct viral cytotoxicity, serum-induced cardiotoxicity secondary to serological hyperinflammation constitutes a potentially amenable mechanism that remains largely unexplored. METHODS AND RESULTS: To investigate serological drivers of cardiotoxicity in COVID-19 we have established a robust bioassay that assessed the effects of serum from COVID-19 confirmed patients on human embryonic stem cell (hESC)-derived cardiomyocytes. We demonstrate that serum from COVID-19 positive patients significantly reduced cardiomyocyte viability independent of viral transduction, an effect that was also seen in non-COVID-19 acute respiratory distress syndrome (ARDS). Serum from patients with greater disease severity led to worse cardiomyocyte viability and this significantly correlated with levels of key inflammatory cytokines, including IL-6, TNF-α, IL1-ß, IL-10, CRP, and neutrophil to lymphocyte ratio with a specific reduction of CD4+ and CD8+ cells. Combinatorial blockade of IL-6 and TNF-α partly rescued the phenotype and preserved cardiomyocyte viability and function. Bulk RNA sequencing of serum-treated cardiomyocytes elucidated specific pathways involved in the COVID-19 response impacting cardiomyocyte viability, structure, and function. The observed effects of serum-induced cytotoxicity were cell-type selective as serum exposure did not adversely affect microvascular endothelial cell viability but resulted in endothelial activation and a procoagulant state. CONCLUSION: These results provide direct evidence that inflammatory cytokines are at least in part responsible for the cardiovascular damage seen in COVID-19 and characterise the downstream activated pathways in human cardiomyocytes. The serum signature of patients with severe disease indicates possible targets for therapeutic intervention.


Asunto(s)
COVID-19 , Humanos , Citocinas , Cardiotoxicidad , Interleucina-6 , Factor de Necrosis Tumoral alfa
11.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100545

RESUMEN

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Asunto(s)
Inmunidad Innata , Pulmón , Humanos , Diferenciación Celular , Células Asesinas Naturales , Células Epiteliales
12.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895021

RESUMEN

ANCA-associated vasculitides (AAV) are rare autoimmune diseases causing inflammation and damage to small blood vessels. New autoantibody biomarkers are needed to improve the diagnosis and treatment of AAV patients. In this study, we aimed to profile the autoantibody repertoire of AAV patients using in-house developed antigen arrays to identify previously unreported antibodies linked to the disease per se, clinical subgroups, or clinical activity. A total of 1743 protein fragments representing 1561 unique proteins were screened in 229 serum samples collected from 137 AAV patients at presentation, remission, and relapse. Additionally, serum samples from healthy individuals and patients with other type of vasculitis and autoimmune-inflammatory conditions were included to evaluate the specificity of the autoantibodies identified in AAV. Autoreactivity against members of the kinesin protein family were identified in AAV patients, healthy volunteers, and disease controls. Anti-KIF4A antibodies were significantly more prevalent in AAV. We also observed possible associations between anti-kinesin antibodies and clinically relevant features within AAV patients. Further verification studies will be needed to confirm these findings.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Autoanticuerpos , Humanos , Cinesinas , Biomarcadores , Proteínas/uso terapéutico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico
13.
Cell Genom ; 3(8): 100361, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37601966

RESUMEN

The China Kadoorie Biobank (CKB) is a population-based prospective cohort of >512,000 adults recruited from 2004 to 2008 from 10 geographically diverse regions across China. Detailed data from questionnaires and physical measurements were collected at baseline, with additional measurements at three resurveys involving ∼5% of surviving participants. Analyses of genome-wide genotyping, for >100,000 participants using custom-designed Axiom arrays, reveal extensive relatedness, recent consanguinity, and signatures reflecting large-scale population movements from recent Chinese history. Systematic genome-wide association studies of incident disease, captured through electronic linkage to death and disease registries and to the national health insurance system, replicate established disease loci and identify 14 novel disease associations. Together with studies of candidate drug targets and disease risk factors and contributions to international genetics consortia, these demonstrate the breadth, depth, and quality of the CKB data. Ongoing high-throughput omics assays of collected biosamples and planned whole-genome sequencing will further enhance the scientific value of this biobank.

14.
Nat Genet ; 55(6): 1066-1075, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37308670

RESUMEN

Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Tetranitrato de Pentaeritritol , Humanos , Estudio de Asociación del Genoma Completo , Inmunidad Innata
15.
Cell Rep ; 42(6): 112613, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37302069

RESUMEN

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Proteómica , Fenotipo
16.
Front Immunol ; 14: 1162171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051252

RESUMEN

Introduction: While complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood. Methods: We therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome. Results: We show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID. Conclusion: In conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted.


Asunto(s)
COVID-19 , Lectina de Unión a Manosa , Humanos , Síndrome Post Agudo de COVID-19 , COVID-19/genética , SARS-CoV-2 , Genotipo , Lectinas , Gravedad del Paciente , Lectina de Unión a Manosa/genética
17.
Trials ; 24(1): 180, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906660

RESUMEN

BACKGROUND: Sequential B cell-targeted immunotherapy with BAFF antagonism (belimumab) and B cell depletion (rituximab) may enhance B cell targeting in ANCA-associated vasculitis (AAV) through several mechanisms. METHODS: Study design: COMBIVAS is a randomised, double-blind, placebo-controlled trial designed to assess the mechanistic effects of sequential therapy of belimumab and rituximab in patients with active PR3 AAV. The recruitment target is 30 patients who meet the criteria for inclusion in the per-protocol analysis. Thirty-six participants have been randomised to one of the two treatment groups in a 1:1 ratio: either rituximab plus belimumab or rituximab plus placebo (both groups with the same tapering corticosteroid regimen), and recruitment is now closed (final patient enrolled April 2021). For each patient, the trial will last for 2 years comprising a 12-month treatment period followed by a 12-month follow-up period. PARTICIPANTS: Participants have been recruited from five of seven UK trial sites. Eligibility criteria were age ≥ 18 years and a diagnosis of AAV with active disease (newly diagnosed or relapsing disease), along with a concurrent positive test for PR3 ANCA by ELISA. INTERVENTIONS: Rituximab 1000 mg was administered by intravenous infusions on day 8 and day 22. Weekly subcutaneous injections of 200 mg belimumab or placebo were initiated a week before rituximab on day 1 and then weekly through to week 51. All participants received a relatively low prednisolone (20 mg/day) starting dose from day 1 followed by a protocol-specified corticosteroid taper aiming for complete cessation by 3 months. OUTCOMES: The primary endpoint of this study is time to PR3 ANCA negativity. Key secondary outcomes include change from baseline in naïve, transitional, memory, plasmablast B cell subsets (by flow cytometry) in the blood at months 3, 12, 18 and 24; time to clinical remission; time to relapse; and incidence of serious adverse events. Exploratory biomarker assessments include assessment of B cell receptor clonality, B cell and T cell functional assays, whole blood transcriptomic analysis and urinary lymphocyte and proteomic analysis. Inguinal lymph node and nasal mucosal biopsies have been performed on a subgroup of patients at baseline and month 3. DISCUSSION: This experimental medicine study provides a unique opportunity to gain detailed insights into the immunological mechanisms of belimumab-rituximab sequential therapy across multiple body compartments in the setting of AAV. TRIAL REGISTRATION: ClinicalTrials.gov NCT03967925. Registered on May 30, 2019.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Inmunosupresores , Humanos , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Anticuerpos Anticitoplasma de Neutrófilos/uso terapéutico , Inmunosupresores/efectos adversos , Proteómica , Ensayos Clínicos Controlados Aleatorios como Asunto , Rituximab , Resultado del Tratamiento
18.
Pulm Circ ; 13(1): e12192, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36721385

RESUMEN

Similar to other causes of acute respiratory distress syndrome, coronavirus disease 2019 (COVID-19) is characterized by the aberrant expression of vascular injury biomarkers. We present the first report that circulating plasma bone morphogenetic proteins (BMPs), BMP9 and pBMP10, involved in vascular protection, are reduced in hospitalized patients with COVID-19.

19.
Nat Immunol ; 24(2): 349-358, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717723

RESUMEN

The biology driving individual patient responses to severe acute respiratory syndrome coronavirus 2 infection remains ill understood. Here, we developed a patient-centric framework leveraging detailed longitudinal phenotyping data and covering a year after disease onset, from 215 infected individuals with differing disease severities. Our analyses revealed distinct 'systemic recovery' profiles, with specific progression and resolution of the inflammatory, immune cell, metabolic and clinical responses. In particular, we found a strong inter-patient and intra-patient temporal covariation of innate immune cell numbers, kynurenine metabolites and lipid metabolites, which highlighted candidate immunologic and metabolic pathways influencing the restoration of homeostasis, the risk of death and that of long COVID. Based on these data, we identified a composite signature predictive of systemic recovery, using a joint model on cellular and molecular parameters measured soon after disease onset. New predictions can be generated using the online tool http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19-systemic-recovery-prediction-app , designed to test our findings prospectively.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Quinurenina , Atención Dirigida al Paciente
20.
Am J Respir Crit Care Med ; 207(5): 566-576, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36095143

RESUMEN

Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.


Asunto(s)
COVID-19 , Interferón Tipo I , Obesidad Infantil , Adulto , Humanos , Niño , SARS-CoV-2 , Leucocitos Mononucleares , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA