Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
2.
Genome Biol ; 25(1): 120, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741126

RESUMEN

BACKGROUND: Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes. RESULTS: Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses. CONCLUSIONS: We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.


Asunto(s)
Fósiles , Genoma , Filogenia , Vertebrados , Animales , Vertebrados/genética , Vertebrados/virología , Evolución Molecular , Humanos , Transferencia de Gen Horizontal , Virus/genética , Genómica/métodos , Retrovirus Endógenos/genética , Elementos Transponibles de ADN
3.
Virol J ; 21(1): 84, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600521

RESUMEN

BACKGROUND: PlMERS-CoV is a coronavirus known to cause severe disease in humans, taxonomically classified under the subgenus Merbecovirus. Recent findings showed that the close relatives of MERS-CoV infecting vespertillionid bats (family Vespertillionidae), named NeoCoV and PDF-2180, use their hosts' ACE2 as their entry receptor, unlike the DPP4 receptor usage of MERS-CoV. Previous research suggests that this difference in receptor usage between these related viruses is a result of recombination. However, the precise location of the recombination breakpoints and the details of the recombination event leading to the change of receptor usage remain unclear. METHODS: We used maximum likelihood-based phylogenetics and genetic similarity comparisons to characterise the evolutionary history of all complete Merbecovirus genome sequences. Recombination events were detected by multiple computational methods implemented in the recombination detection program. To verify the influence of recombination, we inferred the phylogenetic relation of the merbecovirus genomes excluding recombinant segments and that of the viruses' receptor binding domains and examined the level of congruency between the phylogenies. Finally, the geographic distribution of the genomes was inspected to identify the possible location where the recombination event occurred. RESULTS: Similarity plot analysis and the recombination-partitioned phylogenetic inference showed that MERS-CoV is highly similar to NeoCoV (and PDF-2180) across its whole genome except for the spike-encoding region. This is confirmed to be due to recombination by confidently detecting a recombination event between the proximal ancestor of MERS-CoV and a currently unsampled merbecovirus clade. Notably, the upstream recombination breakpoint was detected in the N-terminal domain and the downstream breakpoint at the S2 subunit of spike, indicating that the acquired recombined fragment includes the receptor-binding domain. A tanglegram comparison further confirmed that the receptor binding domain-encoding region of MERS-CoV was acquired via recombination. Geographic mapping analysis on sampling sites suggests the possibility that the recombination event occurred in Africa. CONCLUSION: Together, our results suggest that recombination can lead to receptor switching of merbecoviruses during circulation in bats. These results are useful for future epidemiological assessments and surveillance to understand the spillover risk of bat coronaviruses to the human population.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Filogenia , Funciones de Verosimilitud , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/epidemiología , Recombinación Genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA