Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Opt Express ; 32(10): 17657-17666, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858943

RESUMEN

Tin diselenide (SnSe2), a layered transition metal dichalcogenide (TMDC), stands out among other TMDCs for its extraordinary photoactive ability and low thermal conductivity. Consequently, it has stimulated many influential researches on photodetectors, ultrafast pulse shaping, thermoelectric devices, etc. However, the carrier mobility in SnSe2, as determined experimentally, remains limited to tens of cm2V-1s-1. This limitation poses a challenge for achieving high-performance SnSe2-based devices. Theoretical calculations, on the other hand, predict that the carrier mobility in SnSe2 can reach hundreds of cm2V-1s-1, approximately one order of magnitude higher than experimental value. Interestingly, the carrier mobility could be underestimated significantly in long-range transportation measurements due to the presence of defects and boundary scattering effects. To address this discrepancy, we employ optic pump terahertz probe spectroscopy to access the photoinduced dynamical THz photoconductivity of SnSe2. Our findings reveal that the intrinsic carrier mobility in conventional SnSe2 single crystal is remarkably high, reaching 353.2 ± 37.7 cm2V-1s-1, consistent with the theoretical prediction. Additionally, dynamical THz photoconductivity measurements reveal that the SnSe2 crystal containing rich defects efficiently capture photoinduced conduction-band electrons and valence-band holes with time constants of ∼20 and ∼200 ps, respectively. Meanwhile, we observe an impulsively stimulated Raman scattering at 0.60 THz. Our study not only demonstrates ultrafast THz spectroscopy as a reliable method for determining intrinsic carrier mobility and detection of low frequency coherent Raman mode in materials but also provides valuable reference for the future application of high-performance SnSe2-based devices.

2.
ACS Appl Mater Interfaces ; 16(23): 30589-30597, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814136

RESUMEN

Vertical van der Waals heterostructures composed of graphene (Gr) and transition metal dichalcogenides (TMDs) have created a fascinating platform for exploring optical and electronic properties in the two-dimensional limit. Numerous studies have focused on Gr/TMDs heterostructures to elucidate the underlying mechanisms of charge-energy transfer, quasiparticle formation, and relaxation following optical excitation. Nevertheless, a comprehensive understanding of interfacial charge separation and subsequent dynamics in graphene-based heterostructures remains elusive. Here, we have investigated the carrier dynamics of Gr-MoS2 heterostructures (including Gr/MoS2 and MoS2/Gr stacking sequences) grown on a fused silica substrate under varying photoexcitation energies by comprehensive ultrafast means, including time-resolved terahertz (THz) spectroscopy, THz emission spectroscopy, and transient absorption spectroscopy. Our findings highlight the impact of the substrate electric field on the efficiency of modulating the interfacial charge transfer (CT). Specifically, the optical excitation in Gr/MoS2 generates thermal electron injection from the graphene layer into the MoS2 layer with photon energy well below A-exciton of MoS2, whereas the interfacial CT in the MoS2/Gr is blocked by the electric field of the substrate. In turn, photoexcitation of the A exciton above leads to hole transfer from MoS2 to graphene, which occurs for both Gr-MoS2 heterostructures with opposite stacking orders, resulting in the opposite orientations of the interfacial photocurrent, as directly demonstrated by the out-of-phase THz emission. Moreover, we demonstrate that the recombination time of interfacial exciton is approximately ∼18 ps, whereas the defect-assisted interfacial recombination occurs on a time scale of ∼ns. This study provides valuable insights into the interplay between interfacial CT, substrate effects, and defect engineering in Gr-TMDs heterostructures, thereby facilitating the development of next-generation optoelectronic devices.

3.
Nanomaterials (Basel) ; 14(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727393

RESUMEN

Terahertz (THz) sensors have attracted great attention in the biological field due to their nondestructive and contact-free biochemical samples. Recently, the concept of a quasi-bound state in the continuum (QBIC) has gained significant attention in designing biosensors with ultrahigh sensitivity. QBIC-based metasurfaces (MSs) achieve excellent performance in various applications, including sensing, optical switching, and laser, providing a reliable platform for biomaterial sensors with terahertz radiation. In this study, a structure-engineered THz MS consisting of a "double C" array has been designed, in which an asymmetry parameter α is introduced into the structure by changing the length of one subunit; the Q-factor of the QBIC device can be optimized by engineering the asymmetry parameter α. Theoretical calculation with coupling equations can well reproduce the THz transmission spectra of the designed THz QBIC MS obtained from the numerical simulation. Experimentally, we adopt an MS with α = 0.44 for testing arginine molecules. The experimental results show that different concentrations of arginine molecules lead to significant transmission changes near QBIC resonant frequencies, and the amplitude change is shown to be 16 times higher than that of the classical dipole resonance. The direct limit of detection for arginine molecules on the QBIC MS reaches 0.36 ng/mL. This work provides a new way to realize rapid, accurate, and nondestructive sensing of trace molecules and has potential application in biomaterial detection.

4.
Small ; : e2307785, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054790

RESUMEN

Manipulation of persistent charges in semiconductor nanostructure is the key point to obtain quantum bits towards the application of quantum memory and information devices. However, realizing persistent charge storage in semiconductor nano-systems is still very challenge due to the disturbance from crystal defects and environment conditions. Herein, the two-photon persistent charging induced long-lasting afterglow and charged exciton formation are observed in CsPbBr3 perovskite nanocrystals (NCs) confined in glass host with effective lifetime surpassing one second, where the glass inclosure provides effective protection. A method combining the femtosecond and second time-resolved transient absorption spectroscopy is explored to determine the persistent charging possibility of perovskite NCs unambiguously. Meanwhile, with temperature-dependent spectroscopy, the underlying mechanism of this persistent charging is elucidated. A two-channel carrier transfer model is proposed involving athermal quantum tunneling and slower thermal-assisted channel. On this basis, two different information storage devices are demonstrated with the memory time exceeding two hours under low-temperature condition. These results provide a new strategy to realize persistent charging in perovskite NCs and deepen the understanding of the underlying carrier kinetics, which may pave an alternative way towards novel information memory and optical data storage applications.

5.
Appl Opt ; 62(30): 8136-8142, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038110

RESUMEN

A chiral metamaterial composed of bilayer twisted split-ring resonators is proposed and demonstrated to realize tunable, dual-directional, and multifunctional polarization conversion for terahertz waves. Simulations show that the converter can selectively achieve linear-to-linear, linear-to-right-handed circular, or linear-to-left-handed circular polarization conversion by tuning the polarization and propagating direction of the incident waves. Stokes parameters, ellipticity, and a polarization rotation angle are introduced to determine the output polarization. The circular polarization transmission coefficients and surface current distribution are employed to demonstrate the physical mechanisms of the phenomena above. The proposed converter can find potential applications in terahertz imaging and communications.

6.
Nano Lett ; 23(17): 8171-8179, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638840

RESUMEN

Despite its important role in understanding ultrafast spin dynamics and revealing novel spin/orbit effects, the mechanism of the terahertz (THz) emission from a single ferromagnetic nanofilm upon a femtosecond laser pump still remains elusive. Recent experiments have shown exotic symmetry, which is not expected from the routinely adopted mechanism of ultrafast demagnetization. Here, by developing a bidirectional pump-THz emission spectroscopy and associated symmetry analysis method, we set a benchmark for the experimental distinction of the THz emission induced by various mechanisms. Our results unambiguously unveil a new mechanism─anomalous Nernst effect (ANE) induced THz emission due to the ultrafast temperature gradient created by a femtosecond laser. Quantitative analysis shows that the THz emission exhibits interesting thickness dependence where different mechanisms dominate at different thickness ranges. Our work not only clarifies the origin of the ferromagnetic-based THz emission but also offers a fertile platform for investigating the ultrafast optomagnetism and THz spintronics.

7.
ACS Photonics ; 10(2): 552-553, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36820327

RESUMEN

[This corrects the article DOI: 10.1021/acsphotonics.7b01402.].

8.
J Phys Chem Lett ; 13(40): 9355-9362, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36190250

RESUMEN

Analogous to black phosphorus, SnS processes folded structure that shows a strongly anisotropic optical absorption. Herein, by using ultrafast two-color pump and probe spectroscopy, the azimuthal angle dependence of nonlinear optical anisotropy in SnS is investigated. After 390 nm photoexcitation, the reflectivity of the 780 nm probe beam is first reduced significantly, followed by a complex alternation with the rotation of the sample along the c-axis. The relaxation of reflectivity consisted of two components: a 1-3 ps fast process that shows azimuthal angle and pump fluence dependence, which arises from electron-phonon coupling. The slow process shows strongly azimuthal angle dependence, which arises from the recovery of a photoinduced structural change, i.e., from the photoinduced metastable state with Cmcm-like symmetry to the initial state with Pnma symmetry. In addition, a coherent acoustic phonon with a frequency of 40 GHz is also identified, which originates from the temperature gradient-induced strain wave in the SnS crystal.

9.
Light Sci Appl ; 11(1): 209, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794097

RESUMEN

Organic-inorganic hybrid metal halide perovskites (MHPs) have attracted tremendous attention for optoelectronic applications. The long photocarrier lifetime and moderate carrier mobility have been proposed as results of the large polaron formation in MHPs. However, it is challenging to measure the effective mass and carrier scattering parameters of the photogenerated large polarons in the ultrafast carrier recombination dynamics. Here, we show, in a one-step spectroscopic method, that the optical-pump and terahertz-electromagnetic probe (OPTP) technique allows us to access the nature of interplay of photoexcited unbound charge carriers and optical phonons in polycrystalline CH3NH3PbI3 (MAPbI3) of about 10 µm grain size. Firstly, we demonstrate a direct spectral evidence of the large polarons in polycrystalline MAPbI3. Using the Drude-Smith-Lorentz model along with the FrÓ§hlich-type electron-phonon (e-ph) coupling, we determine the effective mass and scattering parameters of photogenerated polaronic carriers. We discover that the resulting moderate polaronic carrier mobility is mainly influenced by the enhanced carrier scattering, rather than the polaron mass enhancement. While, the formation of large polarons in MAPbI3 polycrystalline grains results in a long charge carrier lifetime at room temperature. Our results provide crucial information about the photo-physics of MAPbI3 and are indispensable for optoelectronic device development with better performance.

10.
J Phys Chem Lett ; : 5123-5130, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35657644

RESUMEN

Heterostructures constructed from graphene and transition metal dichalcogenides (TMDs) have established a new platform for optoelectronic applications. After a large number of studies, one intriguing debate is the existence of the interfacial exciton in graphene/TMDs. Hereby, by combined optical pump-terahertz probe spectroscopy and transient absorption spectroscopy, we report the observation of the interfacial exciton in graphene/MoS2 heterostructure. With the photon energy well below the band gap of monolayer MoS2, the hot electrons of graphene are transferred to MoS2 within 0.5 ps; subsequently, the relaxation of the holes in graphene and electrons in MoS2 shows an identical time scale of 15-18 ps, which manifests the formation and relaxation of the interfacial exciton in the heterostructure following photoexcitation. Moreover, a model of the carrier heating and photogating effect in graphene is proposed to estimate the amount of transferred charge, which agrees well with the experimental results. Our study provides insights into the dynamics of graphene-based heterostructure interfacial non-equilibrium carriers.

11.
Med Sci Monit ; 28: e935696, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35527384

RESUMEN

BACKGROUND Neoadjuvant chemotherapy is an important treatment for advanced gastric cancer, but it has been unclear whether neoadjuvant chemotherapy is closely related to lymph node metastasis. Therefore, based on the disease characteristics of the cT2-cT4N0M0 gastric cancer population, this study established a nomogram prediction model of lymph node metastasis risk in this gastric cancer population to help clinicians optimize clinical decision-making. MATERIAL AND METHODS We analyzed the data of 336 patients with advanced gastric cancer with CT imaging stage of cT2-cT4N0M0 admitted to the Third Department of the Fourth Hospital of Hebei Medical University from 2015 to 2021. Combined with the results of univariate and multivariate logistic regression analysis, 7 indicators were selected to establish a nomogram prediction model. The calibration curves, ROC curves, and decision curves were drawn against the nomogram model using R language. RESULTS The results showed that the AUC value of the model and the external validation data set were 0.925 and 0.911, respectively. The P value of the Hosmer-Lemeshow test for the internal validation dataset was 0.082, and the P value of Hosmer-Lemeshow test for the external validation dataset was 0.076.The decision curve results showed that when the threshold probability was 0.1-0.9, this model could benefit patients by predicting the risk of lymph node metastasis in patients with advanced gastric cancer, and formulating appropriate treatment schemes accordingly. CONCLUSIONS This nomogram has shown good discrimination and fit, and can also be combined with imaging examination to screen the populations suitable for neoadjuvant chemotherapy, avoid the risk of misdiagnosis of N staging to the greatest extent, and to assist clinicians to optimize clinical decision-making.


Asunto(s)
Nomogramas , Neoplasias Gástricas , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Terapia Neoadyuvante , Estudios Retrospectivos , Neoplasias Gástricas/patología
12.
J Phys Chem Lett ; 13(12): 2757-2764, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35315678

RESUMEN

By using optical pump and terahertz probe spectroscopy, we have investigated the photocarrier dynamics in PdSe2 films with different thicknesses. The experimental results reveal that the photocarrier relaxation consists of two components: a fast component of 2.5 ps that shows the layer-thickness independence and a slow component that has typical lifetime of 7.3 ps decreasing with the layer thickness. Interestingly, the relaxation times for both fast and slow components exhibited both pump fluence and temperature independence, which suggests that synergistic interactions between defect trapping and Auger effect dominate the photocarrier dynamics in PdSe2 films. A model involving a defect-assisted Auger process is proposed, which can reproduce the experimental results well. The fitting results reveal that the layer-dependent lifetime is determined by the defect density rather than carrier occupancy rate after photoexcitation. Our results underscore the interplay between the Auger process and defects in two-dimensional semiconductors.

13.
Appl Opt ; 61(33): 9788-9794, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36606807

RESUMEN

The intrinsic link between surface plasmon modes (eigenmodes) and lattice modes in subwavelength periodic structures is investigated based on the split-ring metamaterial structure. The paper shows that the strong coupling between the eigenmodes and the lattice modes can be achieved by appropriately adjusting the period of the metamaterial structure, and the emergence of new, to the best of our knowledge, modes at low frequencies is observed, resulting in a lower spectral loss of a single hybrid resonance and an increase in its Q factor up to 110. In addition, an asymmetric double-split-ring structure is proposed, and the Fano resonance is excited, giving rise to a spectral line with three resonance valleys. The coupled harmonic-oscillator model is used to interpret the underlying coupling mechanism in lattice-induced transparent systems, which agrees well with our simulation results. This strong-coupling scheme between the lattice and the mixed modes of the metamaterial unit provides a new avenue to modulate lattice-induced transparency, high-Q resonance, and strong-field confinement, which may find applications in the design of ultrasensitive sensors, slow-light devices, as well as multiple frequency absorbers and other fields.

14.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615915

RESUMEN

By employing optical pump Terahertz (THz) probe spectroscopy, ultrafast photocarrier dynamics of a two-dimensional (2D) semiconductor, SnS2 nanoflake film, has been investigated systematically at room temperature. The dynamics of photoexcitation is strongly related to the density of edge sites and defects in the SnS2 nanoflakes, which is controllable by adjusting the height of vertically aligned SnS2 during chemical vapor deposition growth. After photoexcitation at 400 nm, the transient THz photoconductivity response of the films can be well fitted with bi-exponential decay function. The fast and slow processes are shorter in the thinner film than in the thicker sample, and both components are independent on the pump fluence. Hereby, we propose that edge-site trapping as well as defect-assisted electron-hole recombination are responsible for the fast and slow decay progress, respectively. Our experimental results demonstrate that the edge sites and defects in SnS2 nanoflakes play a dominant role in photocarrier relaxation, which is crucial in understanding the photoelectrochemical performance of SnS2 nanoflakes.

15.
Appl Opt ; 60(17): 5037-5043, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34143068

RESUMEN

In this study, we have reported a newly ultrafast optically modulated terahertz (THz) switch based on the transition metal dichalcogenide (TMD) material platinum diselenide (${{\rm PtSe}_2}$) with different thicknesses. The high-quality ${{\rm PtSe}_2}$ thin films with centimeter scale are fabricated on sapphire substrate by the chemical vapor deposition method. The optical pump and THz probe (OPTP) spectroscopy reveals that the THz response of the thin films is as fast as ${\sim} 2.0 \; {\rm ps}$ after photoexcitation of a 780 nm pulse. Interestingly, we found that the THz response time of the ${{\rm PtSe}_2}$ semimetal phase is faster than that of the semiconducting phase. In addition, the THz response time becomes faster when increasing the film thickness for the semimetal phase ${{\rm PtSe}_2}$, while for the semiconducting phase, the response time becomes slower with film thickness. Moreover, degenerate optical pump and optical probe spectroscopy (OPOP) demonstrated that the ultrafast photoinduced negative absorption (photoinduced bleaching) occurs after photoexcitation of 780 nm, and the subsequent recovery consists of two relaxation processes: the fast component with more than 85% of weight has a lifetime of ${\sim}{1.5}\;{\rm ps}$ for semiconducting-phase films and less than 1 ps for the semimetal phase, similar to the response time obtained from OPTP measurement. The slow component with less than 15% of weight has a lifetime of a few hundred picoseconds. The subpicosecond response time observed in both OPTP and OPOP is ascribed to the carrier trapping by defect states, and the slow relaxation process appearing in OPOP arises from the defect state relevant relaxation that is insensitive to the THz photoconductivity due to the frozen carrier mobility in defect states. Our experimental results demonstrate a new application of TMD materials such as ${{\rm PtSe}_2}$ in THz technology, for instance, the design and fabrication of THz modulators and THz switches.

16.
Phys Rev Lett ; 126(22): 227402, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34152189

RESUMEN

As a newly emergent type-II Dirac semimetal, platinum telluride (PtTe_{2}) stands out from other two dimensional noble-transition-metal dichalcogenides for the unique band structure and novel physical properties, and has been studied extensively. However, the ultrafast response of low energy quasiparticle excitation in terahertz frequency remains nearly unexplored yet. Herein, we employ optical pump-terahertz probe (OPTP) spectroscopy to systematically study the photocarrier dynamics of PtTe_{2} thin films with varying pump fluence, temperature, and film thickness. Upon photoexcitation the terahertz photoconductivity (PC) of PtTe_{2} films shows abrupt increase initially, while the terahertz PC changes into negative value in a subpicosecond timescale, followed by a prolonged recovery process that lasted a few nanoseconds. The magnitude of both positive and negative terahertz PC response shows strongly pump fluence dependence. We assign the unusual negative terahertz PC to the formation of small polaron due to the strong electron-phonon (e-ph) coupling, which is further substantiated by temperature and film thickness dependent measurements. Moreover, our investigations give a subpicosecond timescale of simultaneous carrier cooling and polaron formation. The present study provides deep insights into the underlying dynamics evolution mechanisms of photocarrier in type-II Dirac semimetal upon photoexcitation, which is of crucial importance for designing PtTe_{2}-based optoelectronic devices.

17.
Nat Commun ; 12(1): 3115, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035241

RESUMEN

Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system's ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.

18.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322417

RESUMEN

Weld bead geometry features (WBGFs) such as the bead width, height, area, and center of gravity are the common factors for weighing welding quality control. The effective modeling of these WBGFs contributes to implementing timely decision making of welding process parameters to improve welding quality and enhance automatic levels. In this work, a dynamic modeling method of WBGFs is presented based on machine vision and learning in multipass gas metal arc welding (GMAW) with typical joints. A laser vision sensing system is used to detect weld seam profiles (WSPs) during the GMAW process. A novel WSP extraction method is proposed using scale-invariant feature transform and machine learning. The feature points of the extracted WSP, namely the boundary points of the weld beads, are identified with slope mutation detection and number supervision. In order to stabilize the modeling process, a fault detection and diagnosis method is implemented with cubic exponential smoothing, and the diagnostic accuracy is within 1.50 pixels. A linear interpolation method is presented to implement sub pixel discrimination of the weld bead before modeling WBGFs. With the effective feature points and the extracted WSP, a scheme of modeling the area, center of gravity, and all-position width and height of the weld bead is presented. Experimental results show that the proposed method in this work adapts to the variable features of the weld beads in thick plate GMAW with T-joints and butt/lap joints. This work can provide more evidence to control the weld formation in a thick plate GMAW in real time.

19.
Appl Opt ; 59(35): 11046-11052, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33361930

RESUMEN

The influence of doping on the ultrafast carrier dynamics in InSb has been studied by time-resolved terahertz spectroscopy with photogenerated carrier densities from 1.5×1018 to 9.5×1019cm-3 at 800 nm. The photoinduced absorption and carrier recovery process show doping type dependence. The carrier recovery time of intrinsic InSb is greater than that of p-doped InSb but less than that of n-doped InSb at low carrier densities. At high carrier densities, compared with intrinsic InSb, the doped InSb is more prone to transient Auger recombination, which indicates that the appearance of the fast decay process depends on the carrier densities. The photoinduced absorption of terahertz probe pulse of n-doped InSb is significantly less than that of p-doped and intrinsic InSb; however, that of p-doped InSb is close to that of intrinsic InSb, which demonstrates that the high concentration of electrons can accelerate the efficiency of transient Auger recombination. Our analysis provides assistance to the design, manufacture, and improvement of photovoltaic detectors.

20.
Nanoscale ; 12(4): 2498-2506, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31930248

RESUMEN

Efficient interfacial light-electric interconversion in van der Waals heterostructures is critical for their optoelectronic applications. Using time-resolved terahertz spectroscopy and transient absorption spectroscopy, the charge transfer and the dynamical interlayer excitons were investigated in the heterostructures comprising monolayer WSe2 and monolayer graphene with varying stacking order on a sapphire substrate. Herein, a more comprehensive understanding of ultrafast charge transfer and exciton dynamics in two-dimensional heterostructures is shown. Owing to the effective electric field induced by the sapphire substrate, the WSe2/graphene heterostructure exhibits positive terahertz photoconductivity after photoexcitation, while negative terahertz photoconductivity is observed in the graphene/WSe2 heterostructure. The transient absorption spectra indicate that the exciton lifetimes also exhibit a considerable difference, where WSe2/graphene exhibits the longest exciton lifetime, followed by monolayer WSe2, while graphene/WSe2 exhibits the shortest lifetime. These observations provide a new idea for using van der Waals heterostructures in electronic and photonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA