Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.581
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Med Sci ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967889

RESUMEN

OBJECTIVE: Colorectal cancer (CRC), a prevalent malignancy worldwide, has prompted extensive research into anticancer drugs. Traditional Chinese medicinal materials offer promising avenues for cancer management due to their diverse pharmacological activities. This study investigated the effects of Notopterygium incisum, a traditional Chinese medicine named Qianghuo (QH), on CRC cells and the underlying mechanism. METHODS: The sulforhodamine B assay and colony formation assay were employed to assess the effect of QH extract on the proliferation of CRC cell lines HCT116 and Caco-2. Propidium iodide (PI) staining was utilized to detect cell cycle progression, and PE Annexin V staining to detect apoptosis. Western blotting was conducted to examine the levels of apoptotic proteins, including B-cell lymphoma 2-interacting mediator of cell death (BIM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (BAX) and cleaved caspase-3, as well as BIM stability after treatment with the protein synthesis inhibitor cycloheximide. The expression of BAX was suppressed using lentivirus-mediated shRNA to validate the involvement of the BIM/BAX axis in QH-induced apoptosis. The in vivo effects of QH extract on tumor growth were observed using a xenograft model. Lastly, APCMin+ mice were used to study the effects of QH extract on primary intestinal tumors. RESULTS: QH extract exhibited significant in vitro anti-CRC activities evidenced by the inhibition of cell proliferation, perturbation of cell cycle progression, and induction of apoptosis. Mechanistically, QH extract significantly increased the stability of BIM proteins, which undergo rapid degradation under unstressed conditions. Knockdown of BAX, the downstream effector of BIM, significantly rescued QH-induced apoptosis. Furthermore, the in vitro effect of QH extract was recapitulated in vivo. QH extract significantly inhibited the tumor growth of HCT116 xenografts in nude mice and decreased the number of intestinal polyps in the APCMin+ mice. CONCLUSION: QH extract promotes the apoptosis of CRC cells by preventing the degradation of BIM.

2.
Cancer Med ; 13(13): e7342, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967142

RESUMEN

OBJECTIVE: Our study aims to evaluate the predictive accuracy of functional liver remnant volume (FLRV) in post-hepatectomy liver failure (PHLF) among surgically-treated jaundiced patients with hilar cholangiocarcinoma (HCCA). METHODS: We retrospectively reviewed surgically-treated jaundiced patients with HCCA between June, 2000 and June, 2018. The correlation between FRLV and PHLF were analyzed. The optimal cut off value of FLRV in jaundiced HCCA patients was also identified and its impact was furtherly evaluated. RESULTS: A total of 224 jaundiced HCCA patients who received a standard curative resection (43 patients developed PHLF) were identified. Patients with PHLF shared more aggressive clinic-pathological features and were generally in a more advanced stage than those without PHLF. An obvious inconsistent distribution of FLRV in patients with PHLF and those without PHLF were detected. FLRV (continuous data) had a high predictive accuracy in PHLF. The newly-acquired cut off value (FLRV = 53.5%, sensitivity = 81.22%, specificity = 81.4%) showed a significantly higher predictive accuracy than conventional FLRV cut off value (AUC: 0.81 vs. 0.60, p < 0.05). Moreover, patients with FLRV lower than 53.5% also shared a significantly higher major morbidity rate as well as a worse prognosis, which were not detected for FLRV of 40%. CONCLUSION: For jaundiced patients with HCCA, a modified FLRV of 53.5% is recommended due to its great impact on PHLF, as well as its correlation with postoperative major morbidities as well as overall prognosis, which might help clinicians to stratify patients with different therapeutic regimes and outcomes. Future multi-center studies for training and validation are required for further validation.


Asunto(s)
Neoplasias de los Conductos Biliares , Hepatectomía , Ictericia , Tumor de Klatskin , Fallo Hepático , Humanos , Masculino , Hepatectomía/efectos adversos , Femenino , Persona de Mediana Edad , Tumor de Klatskin/cirugía , Tumor de Klatskin/patología , Estudios Retrospectivos , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/patología , Fallo Hepático/etiología , Fallo Hepático/prevención & control , China/epidemiología , Ictericia/etiología , Hígado/cirugía , Hígado/patología , Anciano , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/epidemiología , Pronóstico , Adulto , Tamaño de los Órganos
3.
Small ; : e2402669, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970544

RESUMEN

Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.

4.
Crit Care ; 28(1): 213, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956604

RESUMEN

BACKGROUND: The multidimensional biological mechanisms underpinning acute respiratory distress syndrome (ARDS) continue to be elucidated, and early biomarkers for predicting ARDS prognosis are yet to be identified. METHODS: We conducted a multicenter observational study, profiling the 4D-DIA proteomics and global metabolomics of serum samples collected from patients at the initial stage of ARDS, alongside samples from both disease control and healthy control groups. We identified 28-day prognosis biomarkers of ARDS in the discovery cohort using the LASSO method, fold change analysis, and the Boruta algorithm. The candidate biomarkers were validated through parallel reaction monitoring (PRM) targeted mass spectrometry in an external validation cohort. Machine learning models were applied to explore the biomarkers of ARDS prognosis. RESULTS: In the discovery cohort, comprising 130 adult ARDS patients (mean age 72.5, 74.6% male), 33 disease controls, and 33 healthy controls, distinct proteomic and metabolic signatures were identified to differentiate ARDS from both control groups. Pathway analysis highlighted the upregulated sphingolipid signaling pathway as a key contributor to the pathological mechanisms underlying ARDS. MAP2K1 emerged as the hub protein, facilitating interactions with various biological functions within this pathway. Additionally, the metabolite sphingosine 1-phosphate (S1P) was closely associated with ARDS and its prognosis. Our research further highlights essential pathways contributing to the deceased ARDS, such as the downregulation of hematopoietic cell lineage and calcium signaling pathways, contrasted with the upregulation of the unfolded protein response and glycolysis. In particular, GAPDH and ENO1, critical enzymes in glycolysis, showed the highest interaction degree in the protein-protein interaction network of ARDS. In the discovery cohort, a panel of 36 proteins was identified as candidate biomarkers, with 8 proteins (VCAM1, LDHB, MSN, FLG2, TAGLN2, LMNA, MBL2, and LBP) demonstrating significant consistency in an independent validation cohort of 183 patients (mean age 72.6 years, 73.2% male), confirmed by PRM assay. The protein-based model exhibited superior predictive accuracy compared to the clinical model in both the discovery cohort (AUC: 0.893 vs. 0.784; Delong test, P < 0.001) and the validation cohort (AUC: 0.802 vs. 0.738; Delong test, P = 0.008). INTERPRETATION: Our multi-omics study demonstrated the potential biological mechanism and therapy targets in ARDS. This study unveiled several novel predictive biomarkers and established a validated prediction model for the poor prognosis of ARDS, offering valuable insights into the prognosis of individuals with ARDS.


Asunto(s)
Biomarcadores , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/sangre , Masculino , Femenino , Anciano , Biomarcadores/sangre , Biomarcadores/análisis , Pronóstico , Persona de Mediana Edad , Proteómica/métodos , Estudios de Cohortes , Anciano de 80 o más Años , Proteínas Sanguíneas/análisis , Metabolómica/métodos , Multiómica
5.
Artículo en Inglés | MEDLINE | ID: mdl-38967632

RESUMEN

The structures of three 1:1 cocrystal forms of etoricoxib {ETR; systematic name: 5-chloro-2-(6-methylpyridin-3-yl)-3-[4-(methylsulfonyl)phenyl]pyridine, C18H15ClN2O2S} have been synthesized and characterized by single-crystal X-ray diffraction; these are etoricoxib-benzoic acid (1/1), C18H15ClN2O2S·C7H6O2 (ETR-Bz), etoricoxib-4-fluorobenzoic acid (1/1), C18H15ClN2O2S·C7H5FO2 (ETR-PFB), and etoricoxib-4-nitrobenzoic acid (1/1), C18H15ClN2O2S·C7H5NO4 (ETR-PNB). Powder X-ray diffraction and thermal differential scanning calorimetry-thermogravimetry (DSC-TG) techniques were also used to characterize these multicomponent systems. Due to the influence of the corresponding acids, ETR shows different conformations. Furthermore, the energetic contributions of the supramolecular motifs have been established by energy framework studies of the stabilizing interaction forces and are consistent with the thermal stability of the cocrystals.

6.
J Org Chem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951997

RESUMEN

We have successfully synthesized a series of bidentate ligands by utilizing 2-(trimethylsilyl)phenyl trifluorosulfonate as a precursor for the benzyl group. This method proceeded by inserting a polythiourea into the C═S π-bond, intramolecular ring proton migration, and ring opening. Salient features of this strategy are mild reaction conditions, a novel product structure, excellent stereochemistry, and a good functional group tolerance. Furthermore, a series of density functional theory calculations were performed to gain insights into the transfer mechanism.

7.
Heliyon ; 10(11): e32145, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912497

RESUMEN

Fuzzy hybrid models are efficient mathematical tools for managing unclear and vague data in real-world scenarios. This research explores the q-rung orthopair fuzzy soft set (q-ROFSS), which presents incomplete and ambiguous details in decision-making problems. The main intention of this study is to describe and evaluate the characteristics of the correlation coefficient (CC) and weighted correlation coefficient (WCC) for q-ROFSS. Also, the technique for order preference should be enhanced by similarity to the ideal solution (TOPSIS) with extended measures in q-ROFSS settings. Furthermore, we integrated mathematical formulations of correlation obstructions to confirm the consistency of the planned technique. It helps handle difficulties involving multi-attribute group decision-making (MAGDM). Moreover, a numerical illustration is presented to clarify how the advocated decision-making methodology can be implemented in evaluating suppliers in green supply chain management (GSCM). As a result, each alternative is assessed using multiple criteria, such as quality and reliability, capacity and scalability, compliance and certifications, and sustainability practices. The technique proposed in this study retains the selected research's specific structure more effectively than current techniques. A comparative analysis further substantiates the feasibility and effectiveness of the proposed approach over other decision-making techniques.

8.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826229

RESUMEN

Numerous biological processes and diseases are influenced by lipid composition. Advances in lipidomics are elucidating their roles, but analyzing and interpreting lipidomics data at the systems level remain challenging. To address this, we present iLipidome, a method for analyzing lipidomics data in the context of the lipid biosynthetic network, thus accounting for the interdependence of measured lipids. iLipidome enhances statistical power, enables reliable clustering and lipid enrichment analysis, and links lipidomic changes to their genetic origins. We applied iLipidome to investigate mechanisms driving changes in cellular lipidomes following supplementation of docosahexaenoic acid (DHA) and successfully identified the genetic causes of alterations. We further demonstrated how iLipidome can disclose enzyme-substrate specificity and pinpoint prospective glioblastoma therapeutic targets. Finally, iLipidome enabled us to explore underlying mechanisms of cardiovascular disease and could guide the discovery of early lipid biomarkers. Thus, iLipidome can assist researchers studying the essence of lipidomic data and advance the field of lipid biology.

9.
Adv Mater ; : e2402929, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847976

RESUMEN

Radiotherapy (RT) is a crucial clinical modality for cancer. However, nonselectivity, toxicity to normal tissues, and radio-resistance severely limit RT applications. This study develops a versatile X-ray theranostic nano-antioxidant (XTN) to prevent normal tissues from oxidative damage and induce systematic and robust anticancer immunity. XTN owns NIR-II photoacoustic (PA) imaging properties for precise discrimination of the tumor margin through, thereby improving the accuracy of RT. Additionally, XTN is a nano-antioxidant to enhance the cell viability of normal cells after irradiation. Most importantly, XTN scavenges reactive oxygen species (ROS) in the TME to preserve the stimulatory activity of released high mobility group protein B1 to dendritic cells (DCs) and recover T cells' immune function. Meanwhile, XTN achieves charge-reversal specifically releasing an immunomodulator (demethylcantharidin, DMC) in the acidic TME. Moreover, the specifically released DMC inhibits protein phosphatase-2A activity and reduces regulatory T cell (Treg) differentiation. In the bilateral 4T1 tumor model, XTN-mediated radioimmunotherapy remarkably boosts a systemic antitumor immune response and induces durable immunological memory against tumor growth.

10.
BMC Sports Sci Med Rehabil ; 16(1): 135, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890690

RESUMEN

BACKGROUND: Ice and snow sports, which are inherently high risk due to their physically demanding nature, pose significant challenges in terms of participant safety. These activities increase the likelihood of injuries, largely due to reduced bodily agility and responsiveness in cold, often unpredictable winter environments. The critical need for effective injury prevention in these sports is emphasized by the considerable impact injuries have on the health of participants, alongside the economic and social costs associated with medical and rehabilitative care. In the context of ice and snow sports environments, applying the E principles of injury prevention to evaluate intervention measures can guide the implementation of future sports safety and other health promotion intervention measures in this field. When well executed, this approach can substantially reduce both the frequency and severity of injuries, thereby significantly enhancing the safety and long-term viability of these challenging sports. OBJECTIVE: The objective of this study was to rigorously assess and statistically substantiate the efficacy of diverse injury prevention strategies in ice and snow sports, aiming to bolster future safety measures with solid empirical evidence. DESIGN: Systematic review and meta-analysis. METHODS: The overarching aim of this research was to meticulously aggregate and scrutinize a broad spectrum of scholarly literature, focusing on the quantifiable efficacy of diverse, multicomponent intervention strategies in mitigating the incidence of injuries within the realm of ice and snow sports. This endeavour entailed an exhaustive extraction of data from esteemed academic databases, encompassing publications up to September 30, 2023. In pursuit of methodological excellence and analytical rigor, the study employed advanced bias assessment methodologies, notably the AMSTAR 2 and GRADE approaches, alongside sophisticated random-effects statistical modelling. This comprehensive approach was designed to ensure the utmost validity, reliability, and scholarly integrity of the study's findings. RESULTS: Fifteen papers, including 9 randomized controlled trials, 3 case‒control studies, and 3 cohort studies with 26,123 participants and 4,382 injuries, were analysed. The findings showed a significant reduction in injury rates through various interventions: overall injury prevention (RR = 0.50, 95% CI 0.42-0.63), educational training (RR = 0.50, 95% CI 0.34-0.73), educational videos (RR = 0.53, 95% CI 0.34-0.81), protective equipment (RR = 0.64, 95% CI 0.46-0.87), and policy changes (RR = 0.28, 95% CI 0.16-0.49). Subgroup analysis revealed potential heterogeneity in compliance (p = 0.347). Compared to controls, multicomponent interventions effectively reduced injury rates. CONCLUSION: This systematic review and meta-analysis demonstrated that multicomponent interventions significantly prevent injuries in ice and snow sports. By applying the E principles of injury prevention and constructing a framework for practical injury prevention research in ice and snow sports, we can gradually shift towards a systemic paradigm for a better understanding of the development and prevention of sports injuries. Moreover, sports injury prevention is a complex and dynamic process. Therefore, high-quality experiments in different scenarios are needed in future research to provide more reliable evidence, offer valuable and relevant prevention information for practitioners and participants, and help formulate more effective preventive measures in practice.

11.
NPJ Breast Cancer ; 10(1): 42, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851818

RESUMEN

The ESR1 ligand binding domain activating mutations are the most prevalent genetic mechanism of acquired endocrine resistance in metastatic hormone receptor-positive breast cancer. These mutations confer endocrine resistance that remains estrogen receptor (ER) dependent. We hypothesized that in the presence of the ER mutations, continued ER blockade with endocrine therapies that target mutant ER is essential for tumor suppression even with chemotherapy treatment. Here, we conducted comprehensive pre-clinical in vitro and in vivo experiments testing the efficacy of adding fulvestrant to fluorouracil (5FU) and the 5FU pro-drug, capecitabine, in models of wild-type (WT) and mutant ER. Our findings revealed that while this combination had an additive effect in the presence of WT-ER, in the presence of the Y537S ER mutation there was synergy. Notably, these effects were not seen with the combination of 5FU and selective estrogen receptor modulators, such as tamoxifen, or in the absence of intact P53. Likewise, in a patient-derived xenograft (PDX) harboring a Y537S ER mutation the addition of fulvestrant to capecitabine potentiated tumor suppression. Moreover, multiplex immunofluorescence revealed that this effect was due to decreased cell proliferation in all cells expressing ER and was not dependent on the degree of ER expression. Taken together, these results support the clinical investigation of the combination of ER antagonists with capecitabine in patients with metastatic hormone receptor-positive breast cancer who have experienced progression on endocrine therapy and targeted therapies, particularly in the presence of an ESR1 activating mutation.

13.
J Environ Manage ; 362: 121302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824896

RESUMEN

Two industrial solid wastes, Ti-bearing blast furnace slag (TBFS) and diamond wire saw silicon waste (DWSSW), contain large amounts of Ti and Si, and their accumulation wastes resources and intensifies environmental pollution. In the present study, DWSSW was used as the silicon source to reduce titanium oxide in TBFS by electromagnetic induction smelting, and meanwhile Na3AlF6 was added as a flux to improve the recycling of the wastes. Ti and Si of the two wastes were simultaneously recovered in the form of alloy. The effects of different addition amount of Na3AlF6 flux in the mixture of DWSSW and TBFS on chemical composition, viscosity, basicity and structure of slag were investigated. The dissolution behavior of SiO2 in Na3AlF6 flux was theoretically deduced and experimentally verification. The optimized recovery rate of Ti and Si were obtained, and the research realizes the efficient recycling of DWSSW and TBFS simultaneously.


Asunto(s)
Aleaciones , Reciclaje , Silicio , Titanio , Titanio/química , Silicio/química , Aleaciones/química , Diamante/química , Residuos Industriales/análisis
14.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839936

RESUMEN

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Asunto(s)
Fibrosis , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Masculino , Proteínas Señalizadoras YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacología , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Acetiltransferasa E N-Terminal/metabolismo , Vía de Señalización Hippo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Cultivadas , Transducción de Señal , Acetiltransferasas N-Terminal/metabolismo , Miocardio/patología , Miocardio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
15.
Front Aging Neurosci ; 16: 1345918, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863783

RESUMEN

Parkinson's disease (PD) is neurodegenerative disease in middle-aged and elderly people with some pathological mechanisms including immune disorder, neuroinflammation, white matter injury and abnormal aggregation of alpha-synuclein, etc. New research suggests that white matter injury may be important in the development of PD, but how inflammation, the immune system, and white matter damage interact to harm dopamine neurons is not yet understood. Therefore, it is particularly important to delve into the crosstalk between immune cells in the central and peripheral nervous system based on the study of white matter damage in PD. This crosstalk could not only exacerbate the pathological process of PD but may also reveal new therapeutic targets. By understanding how immune cells penetrate through the blood-brain barrier and activate inflammatory responses within the central nervous system, we can better grasp the impact of structural destruction of white matter in PD and explore how this process can be modulated to mitigate or combat disease progression. Microglia, astrocytes, oligodendrocytes and peripheral immune cells (especially T cells) play a central role in its pathological process where these immune cells produce and respond to pro-inflammatory cytokines such as tumor necrosis factor (TNF-α), interleukin-1ß(IL-1ß) and interleukin-6(IL-6), and white matter injury causes microglia to become pro-inflammatory and release inflammatory mediators, which attract more immune cells to the damaged area, increasing the inflammatory response. Moreover, white matter damage also causes dysfunction of blood-brain barrier, allows peripheral immune cells and inflammatory factors to invade the brain further, and enhances microglia activation forming a vicious circle that intensifies neuroinflammation. And these factors collectively promote the neuroinflammatory environment and neurodegeneration changes of PD. Overall, these findings not only deepen our understanding of the complexity of PD, but also provide new targets for the development of therapeutic strategies focused on inflammation and immune regulation mechanisms. In summary, this review provided the theoretical basis for clarifying the pathogenesis of PD, summarized the association between white matter damage and the immune cells in the central and peripheral nervous systems, and then emphasized their potential specific mechanisms of achieving crosstalk with further aggravating the pathological process of PD.

16.
Small ; : e2401719, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874065

RESUMEN

Considering the potential threats posed by oily wastewater to the ecosystem, it is urgently in demand to develop efficient, eco-friendly, and intelligent oil/water separation materials to enhance the safety of the water environment. Herein, an intelligent hydrogel-coated wood (PPT/PPy@DW) membrane with self-healing, self-cleaning, and oil pollution detection performances is fabricated for the controllable separation of oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions. The PPT/PPy@DW is prepared by loading polypyrrole (PPy) particles on the delignified wood (DW) membranes, further modifying the hydrogel layer as an oil-repellent barrier. The layered porous structure and selective wettability endow PPT/PPy@DW with great separation performance for various O/W emulsions (≥98.69% for separation efficiency and ≈1000 L m-2 h-1 bar-1 for permeance). Notably, the oil pollution degree of PPT/PPy@DW can be monitored in real-time based on the changed voltage generated during O/W emulsion separation, and the oil-polluted PPT/PPy@DW can be self-cleaned by soaking in water to recover its separation performance. The high affinity of PPT/PPy@DW for water makes it effective in trapping water from the mixed surfactant-stabilized W/O emulsions. The prepared eco-friendly and low-cost multifunctional hydrogel wood membrane shows promising potential in on-demand oil/water separation and provides new ideas for the functional improvement of new biomass oil/water separation membrane materials.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38924763

RESUMEN

Sodium-ion batteries (SIBs) represent a promising energy storage technology with great safety. Because of their high operating potential, superior structural stability, and prominent thermal stability, polyanion-type phosphates have garnered significant interest in superior prospective cathode materials for SIBs. Nevertheless, the disadvantages of poor intrinsic electronic conductivity, sluggish kinetics, and volume variation during sodiation/desodiation remain great challenges for satisfactory rate performance and cycle stability, which severely hinder their further practical applications. In this work, by adjusting the amounts of pretreated multiwalled carbon nanotubes (CNT) added intentionally at the beginning of the preparation, biphasic polyanion-type phosphate materials (marked as NFC) are synthesized through a one-pot solid state reaction methodology, which are composed of CNT-interwoven Na3V2(PO4)2F3 (NVPF) and a small amount of Na3V2(PO4)3 (NVP). Benefiting from the improved electronic conductivity and unique composition and structure, the optimized sample (labeled as NFC-2) illustrates exceptional cycle stability and remarkable rate performance. The discharge capacities of the NFC-2 electrode are 114.8 and 78.6 mAh g-1 tested at 20 and 5000 mA g-1, respectively. Notably, such an electrode still gives out 75.7% capacity retention upon 10 000 cycles at 5000 mA g-1. In situ X-ray diffraction analysis demonstrates that the NFC-2 cathode has outstanding structural reversibility during charge/discharge cycles. More importantly, such a biphasic material has achieved impressive electrochemical performance within a wide operating temperature range of -20-50 °C. When temperature is decreased to -20 °C, the NFC-2 electrode still delivers an initial discharge capacity of 102.4 mAh g-1 and exhibits a remarkable capacity retention of 97.8% even after 500 cycles at 50 mA g-1. In addition, the sodium-ion full cell assembled by integrating NFC-2 cathode and hard carbon anode shows a satisfying energy density of 431.3 Wh kg-1 at 20 mA g-1 with a better long-term cycle performance. The synergistic effect among high energy NVPF, conductive CNT, and stable NVP may lead to the great improvement in the electrochemical sodium storage performance of the NFC-2 sample. Such biphasic polyanion-type phosphate materials will inject new ideas into the material design for SIBs with excellent electrochemical performance and further promote practical applications of this advanced energy storage technology.

18.
Sci Total Environ ; 946: 174269, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936729

RESUMEN

Sulfur-driven autotrophic denitrification (SAD) process is a cost-effective and sustainable method for nitrogen removal from wastewater. However, a higher concentration of zinc ions (Zn(II)) flowing into wastewater treatment plants poses a potential threat to the SAD process. This study examined that a half maximal inhibitory concentration (IC50) of Zn(II) was 7 mg·L-1 in the SAD process. Additionally, the addition of 20 mg·L-1 Zn(II) resulted in a severe accumulation of nitrite to 150.20 ± 6.00 mg·L-1 when the initial concentration of nitrate was 500 mg·L-1. Moreover, the activities of nitrate reductase, nitrite reductase, dehydrogenase and electron transport system were significantly inhibited under Zn(II) stress. The addition of Zn(II) inhibited EPS secretion and worsened electrochemical properties. The result was attributed to the spontaneous binding between EPS and Zn(II), with a ΔG of -17.50 KJ·mol-1 and a binding constant of 1.77 × 104 M-1, respectively. Meanwhile, the protein, fulvic acid, and humic-like substances occurred static quenching after Zn(II) addition, with -OH and -C=O groups providing binding sites. The binding sequence was fulvic acid→protein→humic acid and -OH â†’ -C=O. Zn(II) also reduced the content of α-helix, which was unfavorable for electron transfer. Additionally, the Zn(II) loosened protein structure, resulting in a 50 % decrease in α-helix/(ß-sheet+random coil). This study reveals the effect of Zn(II) on the SAD process and enhances our understanding of EPS behavior under metal ions stress.

19.
Int J Hematol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814500

RESUMEN

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.

20.
Cancers (Basel) ; 16(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791940

RESUMEN

PURPOSE: To investigate the molecular characteristics of and potential for precision medicine in KRAS wildtype pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS: We investigated 27 patients with KRASWT PDAC at our institution. Clinical data were obtained via chart review. Tumor specimens for each subject were interrogated for somatic single nucleotide variants, insertion and deletions, and copy number variants by DNA sequencing. Gene fusions were detected from RNA-seq. A patient-derived organoid (PDO) was developed from a patient with a MET translocation and expanded ex vivo to predict therapeutic sensitivity prior to enrollment in a phase 2 clinical trial. RESULTS: Transcriptomic analysis showed our cohort may be stratified by the relative gene expression of the KRAS signaling cascade. The PDO derived from our patient harboring a TFG-MET rearrangement was found to have in vitro sensitivity to the multi-tyrosine kinase inhibitor crizotinib. The patient was enrolled in the phase 2 SPARTA clinical trial and received monotherapy with vebrelitinib, a c-MET inhibitor, and achieved a partial and durable response. CONCLUSIONS: KRASWT PDAC is molecularly distinct from KRASMUT and enriched with potentially actionable genetic variants. In our study, transcriptomic profiling revealed that the KRAS signaling cascade may play a key role in KRASWT PDAC. Our report of a KRASWT PDAC patient with TFG-MET rearrangement who responded to a cMET inhibitor further supports the pursuit of precision oncology in this sub-population. Identification of targetable mutations, perhaps through approaches like RNA-seq, can help enable precision-driven approaches to select optimal treatment based on tumor characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA