Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Res Int ; 191: 114711, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059957

RESUMEN

The complexation of physically modified starch with fatty acids is favorable for the production of resistant starch. However, there is a lack of information on the effect of ultrasonication (UC) on the structure and properties of starch complexes and the molecular mechanism of the stabilization. Here, the multi-scale structure and in vitro digestive properties of starch-fatty acid complexes before and after UC were investigated, and the stabilization mechanisms of starch and fatty acids were explored. The results showed that the physicochemical properties and multi-scale structure of the starch-fatty acid complexes significantly changed with the type of fatty acids. The solubility and swelling power of the starch-fatty acid complexes were significantly decreased after UC (P < 0.05), which facilitated the binding of starch with fatty acids. The XRD results revealed that after the addition of fatty acids, the starch-fatty acid complexes showed typical V-shaped complexes. In addition, the starch-fatty acid complexes showed a significant increase in complexing index, improved short-range ordering and enhanced thermal stability. However, the differences in the structure and properties of the fatty acids themselves resulted in no significant improvement in the multi-scale structure of maize starch-palmitic acid by UC. In terms of digestibility, especially the complexes after UC were more compact in structure, which increased the difficulty of enzymatic digestion and thus slowed down the digestion process. DFT calculations and combined with FT-IR analysis showed that non-covalent interactions such as hydrogen bonding and hydrophobic interactions were the main driving force for the formation of the complexes, with binding energies (lauric acid, myristic acid and palmitic acid) of -30.50, -22.14 and -14.10 kcal/mol, respectively. Molecular dynamics simulations further confirmed the molecular mechanism of inclusion complex formation and stabilization. This study is important for the regulation of starchy foods by controlling processing conditions, and provides important information on the role of fatty acids in the regulation of starch complexes and the binding mechanism.


Asunto(s)
Digestión , Ácidos Grasos , Solubilidad , Almidón , Almidón/química , Ácidos Grasos/química , Sonicación , Ácido Palmítico/química , Zea mays/química , Difracción de Rayos X
2.
Cell Mol Gastroenterol Hepatol ; 17(6): 1039-1061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467191

RESUMEN

BACKGROUND & AIMS: The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS: Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS: Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS: Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.


Asunto(s)
Células Endoteliales , Metabolismo de los Lípidos , Hígado , Ratones Noqueados , Animales , Ratones , Animales Recién Nacidos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hígado/metabolismo , Hígado/patología , Proteínas de Transporte de Nucleótidos/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302031

RESUMEN

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Asunto(s)
Glutamatos , Almidón Resistente , Zea mays , Zea mays/química , Almidón Resistente/metabolismo , Ultrasonido , Almidón/química , Amilosa/química , Digestión
4.
Indian J Hematol Blood Transfus ; 40(1): 116-121, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312175

RESUMEN

To investigate the risk factors of FVIII inhibitors development in severe hemophilia A (HA) patients who were received on-demand therapy and were infused with plasma cryoprecipitate and multiple FVIII concentrates alternately. We collected clinical information from 43 severe HA children who were treated with plasma cryoprecipitate and multiple FVIII concentrates. The F8 mutation was detected by long-distance PCR for inversion and detected by all exons and their flanking sequencing for other mutations. The inhibitor detection was performed by Nijmegen-modified Bethesda assay. The impact of novel amino substitutions on FVIII protein was predicted by SIFT and PolyPhen-2. The 3D analysis of missense mutations was performed using Swiss-PdbViewer. FVIII inhibitors were detected in nine cases (20.9%). All of the inhibitor positive cases had high risk F8 gene mutations. In most of the positive cases (7/9), inhibitors were developed during the first 10 EDs, which was significantly higher than that in the 10-50 EDs group and 50 EDs group (p = 0.009). Three novel mutations were reported, including c.214G > T (E72X), c.218 T > C (F73S), and c.2690C > G (S840X). For severe HA patients who are treated with multiple products of replacement therapy, it is important to supervise inhibitor during the first 10EDs, especially for those with high risk F8 gene mutations. F8 gene mutation is one of the most important genetic factors for inhibitor development. It is essential to detect F8 gene for all severe HA patients. Three novel mutations were reported to expand the mutation spectrum of the F8 gene.

5.
Blood Adv ; 8(4): 991-1001, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38237079

RESUMEN

ABSTRACT: Glucosamine (UDP-N-acetyl)-2-epimerase and N-acetylmannosamine (ManNAc) kinase (GNE) is a cytosolic enzyme in de novo sialic acid biosynthesis. Congenital deficiency of GNE causes an autosomal recessive genetic disorder associated with hereditary inclusion body myopathy and macrothrombocytopenia. Here, we report a pediatric patient with severe macrothrombocytopenia carrying 2 novel GNE missense variants, c.1781G>A (p.Cys594Tyr, hereafter, C594Y) and c.2204C>G (p.Pro735Arg, hereafter, P735R). To investigate the biological significance of these variants in vivo, we generated a mouse model carrying the P735R mutation. Mice with homozygous P735R mutations exhibited cerebral hemorrhages as early as embryonic day 11 (E11), which subsequently progressed to large hemorrhages in the brain and spinal cord, and died between E11.5 and E12.5. Defective angiogenesis such as distended vascular sprouts were found in neural tissues and embryonic megakaryocytes were abnormally accumulated in the perineural vascular plexus in mutant mouse embryos. Furthermore, our in vitro experiments indicated that both C594Y and P735R are loss-of-function mutations with respect to de novo sialic acid biosynthesis. Overall, this study reveals a novel role for GNE-mediated de novo sialic acid biosynthesis in mouse embryonic angiogenesis.


Asunto(s)
Angiogénesis , Ácido N-Acetilneuramínico , Animales , Niño , Humanos , Ratones , Encéfalo , Mutación , Mutación Missense
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA