Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3559, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729171

RESUMEN

Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities.


Asunto(s)
Robótica , Desarrollo Sostenible , Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Humanos
2.
J Tissue Eng Regen Med ; 2(2-3): 71-80, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18383453

RESUMEN

Silks have been proposed as potential scaffold materials for tissue engineering, mainly because of their physical properties. They are stable at physiological temperatures, flexible and resist tensile and compressive forces. Bombyx mori (silkworm) cocoon silk has been used as a suture material for over a century, and has proved to be biocompatible once the immunogenic sericin coating is removed. Spider silks have a similar structure to silkworm silk but do not have a sericin coating. This paper provides a general overview on the use of silk protein in biomaterials, with a focus on skeletal tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Huesos/metabolismo , Seda/química , Ingeniería de Tejidos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA