Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023347

RESUMEN

Tear viscosity is a critical property affecting tear distribution and ocular surface stability. While not widely established as a primary diagnostic marker, deviations from normal viscosity can impact ocular health, potentially contributing to conditions such as dry eye syndrome. Despite their importance, traditional viscometers require sample volumes that are not feasible to use with tear volume. This research introduces a novel Quartz Crystal Microbalance (QCM)-based method for tear viscosity measurement, offering a viscometer prototype that operates with minimal sample volumes. Human tear samples, solutions used in artificial eye drops, and various commercial eye drop brands were evaluated. Results show that the QCM method aligns with established viscosity ranges. The average viscosity of healthy human tears was found to be 1.73 ± 0.61 cP, aligning with the typical range of 1-10 cP. Variability in the viscosities of eye drop can be attributed to differences in their chemical compositions. The QCM method offers benefits such as reduced sample consumption and rapid results, enhancing understanding of tear dynamics for ocular health. Further research with larger sample sizes is needed to establish normative viscosity values in healthy individuals and those with dry eye syndrome, which is crucial for validating the device's clinical efficacy.


Asunto(s)
Tecnicas de Microbalanza del Cristal de Cuarzo , Lágrimas , Viscosidad , Lágrimas/química , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Humanos , Soluciones Oftálmicas/química , Síndromes de Ojo Seco
2.
HardwareX ; 14: e00416, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37090786

RESUMEN

Advances in sensors have revolutionized the biomedical engineering field, having an extreme affinity for specific analytes also providing an effective, real-time, point-of-care testing for an accurate diagnosis. Quartz Crystal Microbalance (QCM) is a well-established sensor that has been successfully applied in a broad range of applications to monitor and explore various surface interactions, in situ thin-film formations, and layer properties. This technology has gained interest in biomedical applications since novel QCM systems are able to work in liquid media. QCM with dissipation monitoring (QCM-D) is an expanded version of a QCM that measures changes in damping properties of adsorbed layers thus providing information on its viscoelastic nature. In this article, an open source and low cost QCM-D prototype for biomedical applications was developed. In addition, the system was validated using different Polyethylene Glycol (PEG) concentrations due to its importance for many medical applications. The statistics show a bigger dissipation of the system as the fluid becomes more viscous, also having a very acceptable sensibility when temperature is controlled.

3.
Biochimie ; 91(2): 204-13, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18926872

RESUMEN

The genes encoding for UDPglucose pyrophosphorylase in two Xanthomonas spp. were cloned and overexpressed in Escherichia coli. After purification to electrophoretic homogeneity, the recombinant proteins were characterized, and both exhibited similar structural and kinetic properties. They were identified as dimeric proteins of molecular mass 60kDa, exhibiting relatively high specific activity ( approximately 80Units/mg) for UDPglucose synthesis. Both enzymes utilized UTP or TTP as substrate with similar affinity. The purified Xanthomonas enzyme was inactivated after dilution into the assay medium. Studies of crosslinking with the bifunctional lysyl reagent bisuberate suggest that inactivation occurs by enzyme dissociation to monomers. UTP effectively protects the enzyme against inactivation, from which a dissociation constant of 15microM was calculated for the interaction substrate-enzyme. The UTP binding to the enzyme would induce conformational changes in the protein, favoring the subunits interaction to form an active dimer. This view was reinforced by protein modeling of the Xanthomonas enzyme on the basis of the prokaryotic UDPglucose pyrophosphorylase crystallographic structure. The in silico approach pointed out two main critical regions in the enzyme involved in subunit-subunit interaction: the region surrounding the catalytic-substrate binding site and the C-term.


Asunto(s)
UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Xanthomonas/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Dimerización , Escherichia coli/genética , Amplificación de Genes , Genes Bacterianos , Vectores Genéticos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Plásmidos , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transformación Bacteriana , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/aislamiento & purificación , Xanthomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA