Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38915684

RESUMEN

The classic output pathways of the basal ganglia are known as the direct-D1 and indirect-D2, or Go/No-Go, pathways. Balance of the activity in these canonical direct-indirect pathways is considered a core requirement for normal movement control, and their imbalance is a major etiologic factor in movement disorders including Parkinsons disease. We present evidence for a conceptually equivalent parallel system of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from the matrix. These striosomal direct (S-D1) and indirect (S-D2) pathways, as a pair, target dopamine-containing neurons of the substantia nigra (SNpc) instead of the motor output nuclei of the basal ganglia. The novel anatomically and functionally distinct indirect-D2 striosomal pathway targets dopaminergic SNpc cells indirectly via a core region of the external pallidum (GPe). We demonstrate that these S-D1 and S-D2 pathways oppositely modulate striatal dopamine release in freely behaving mice under open-field conditions and oppositely modulate locomotor and other movements. These S-D1 and S-D2 pathways further exhibit different, time-dependent responses during performance of a probabilistic decision-making maze task and respond differently to rewarding and aversive stimuli. These contrasts depend on mediolateral and anteroposterior striatal locations of the SPNs as are the classic direct and indirect pathways. The effects of S-D1 and S-D2 stimulation on striatal dopamine release and voluntary locomotion are nearly opposite. The parallelism of the direct-indirect circuit design motifs of the striosomal S-D and S-D2 circuits and canonical matrix M-D1 and M-D2, and their contrasting behavioral effects, call for a major reformulation of the classic direct-indirect pathway model of basal ganglia function. Given that some striosomes receive limbic and association cortical inputs, the S-D1 and S-D2 circuits likely influence motivation for action and behavioral learning, complementing and possibly reorienting the motoric activities of the canonical matrix pathways. At a fundamental level, these findings suggest a unifying framework for aligning two sets of circuits that share the organizational motif of opponent D1 and D2 regulation, but that have different outputs and can even have opposite polarities in their targets and effects, albeit conditioned by striatal topography. Our findings further delineate a potentially therapeutically important set of pathways influencing dopamine, including a D2 receptor-linked S-D2 pathway likely unknowingly targeted by administration of many therapeutic drugs including those for Parkinsons disease. The novel parallel pathway model that we propose here could help to account for the normally integrated modulatory influence of the basal ganglia on motivation for actions as well as the actions themselves.

2.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798373

RESUMEN

Circuit influences on the midbrain dopamine system are crucial to adaptive behavior and cognition. Recent developments in the study of neuropeptide systems have enabled high-resolution investigations of the intersection of neuromodulatory signals with basal ganglia circuitry, identifying the nociceptin/orphanin FQ (N/OFQ) endogenous opioid peptide system as a prospective regulator of striatal dopamine signaling. Using a prepronociceptin-Cre reporter mouse line, we characterized highly selective striosomal patterning of Pnoc mRNA expression in mouse dorsal striatum, reflecting early developmental expression of Pnoc . In the ventral striatum, Pnoc expression was was clustered across the nucleus accumbens core and medial shell, including in adult striatum. We found that Pnoc tdTomato reporter cells largely comprise a population of dopamine receptor D1 ( Drd1 ) expressing medium spiny projection neurons localized in dorsal striosomes, known to be unique among striatal projections neurons for their direct innervation of midbrain dopamine neurons. These findings provide new understanding of the intersection of the N/OFQ system among basal ganglia circuits with particular implications for developmental regulation or wiring of striatal-nigral circuits.

3.
bioRxiv ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37645888

RESUMEN

We recorded dopamine release signals in medial and lateral sectors of the striatum as mice learned consecutive visual cue-outcome conditioning tasks including cue association, cue discrimination, reversal, and probabilistic discrimination task versions. Dopamine release responses in medial and lateral sites exhibited learning-related changes within and across phases of acquisition. These were different for the medial and lateral sites. In neither sector could these be accounted for by classic reinforcement learning as applied to dopamine-containing neuron activity. Cue responses ranged from initial sharp peaks to modulated plateau responses. In the medial sector, outcome (reward) responses during cue conditioning were minimal or, initially, negative. By contrast, in lateral sites, strong, transient dopamine release responses occurred at both cue and outcome. Prolonged, plateau release responses to cues emerged in both regions when discriminative behavioral responses became required. In most sites, we found no evidence for a transition from outcome to cue signaling, a hallmark of temporal difference reinforcement learning as applied to midbrain dopamine activity. These findings delineate reshaping of dopamine release activity during learning and suggest that current views of reward prediction error encoding need review to accommodate distinct learning-related spatial and temporal patterns of striatal dopamine release in the dorsal striatum.

4.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35361667

RESUMEN

Cannabinoid receptor 1 (CB1R) has strong effects on neurogenesis and axon pathfinding in the prenatal brain. Endocannabinoids that activate CB1R are abundant in the early postnatal brain and in mother's milk, but few studies have investigated their function in newborns. We examined postnatal CB1R expression in the major striatonigral circuit from striosomes of the striatum to the dopamine-containing neurons of the substantia nigra. CB1R enrichment was first detectable between postnatal day (P)5 and P7, and this timing coincided with the formation of "striosome-dendron bouquets," the elaborate anatomic structures by which striosomal neurons control dopaminergic cell activity through inhibitory synapses. In Cnr1-/- knock-out mice lacking CB1R expression, striosome-dendron bouquets were markedly disorganized by P11 and at adulthood, suggesting a postnatal pathfinding connectivity function for CB1R in connecting striosomal axons and dopaminergic neurons analogous to CB1R's prenatal function in other brain regions. Our finding that CB1R plays a major role in postnatal wiring of the striatonigral dopamine-control system, with lasting consequences at least in mice, points to a crucial need to determine whether lactating mothers' use of CB1R agonists (e.g., in marijuana) or antagonists (e.g., type 2 diabetes therapies) can disrupt brain development in nursing offspring.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Receptor Cannabinoide CB1 , Animales , Animales Recién Nacidos , Antracenos , Agonistas de Receptores de Cannabinoides/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Lactancia , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA