RESUMEN
BACKGROUND: The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD). OBJECTIVES: We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients. METHODS: Twenty mild to moderate AD patients were recruited. We used transcranial magnetic stimulation (TMS) pulses to probe with a millisecond time resolution the propagation of evoked electroencephalography (EEG) signal following the neural activation of the Precuneus (PC), which is a key hub area of the DMN. Moreover, functional and structural magnetic resonance imaging (MRI) data were collected to reconstruct individual features of the DMN. RESULTS: In AD patients a probe TMS pulse applied over the PC evokes an increased local activity unmasking underlying hyperexcitability. In contrast, the EEG evoked neural signal did not propagate efficiently within the DMN showing a remarkable breakdown of signal propagation. fMRI and structural tractography showed that impaired signal propagation was related to the same connectivity matrices derived from DMN BOLD signal and transferred by specific white matter bundles forming the cingulum. These features were not detectable stimulating other areas (left dorsolateral prefrontal cortex) or for different networks (fronto-parietal network). Finally, connectivity breakdown was associated with cognitive impairment, as measured with the Clinical Dementia Rating Scale sum of boxes (CDR-SB). CONCLUSIONS: TMS-EEG in AD shows both local hyperexcitability and a lack of signal propagation within the DMN. These neurophysiological features also correlate with structural and cognitive attributes of the patients. SIGNIFICANCE: Neuronavigated TMS-EEG may be used as a novel neurophysiological biomarker of DMN connectivity in AD patients.
RESUMEN
BACKGROUND: Since birth, during the exploration of the environment to interact with objects, we exploit both the motor and sensory components of the upper limb (UL). This ability to integrate sensory and motor information is often compromised following a stroke. However, to date, rehabilitation protocols are focused primarily on recovery of motor function through physical therapies. Therefore, we have planned a clinical trial to investigate the effect on functionality of UL after a sensorimotor transcranial stimulation (real vs sham) in add-on to robot-assisted therapy in the stroke population. METHODS: A randomised double-blind controlled trial design involving 32 patients with a single chronic stroke (onset > 180 days) was planned. Each patient will undergo 15 consecutive sessions (5 days for 3 weeks) of paired associative stimulation (PAS) coupled with UL robot-assisted therapy. PAS stimulation will be administered using a bifocal transcranial magnetic stimulator (TMS) on the posterior-parietal cortex and the primary motor area (real or sham) of the lesioned hemisphere. Clinical, kinematics and neurophysiological changes will be evaluated at the end of protocol and at 1-month follow-up and compared with baseline. The Fugl-Meyer assessment scale will be the primary outcome. Secondly, kinematic variables will be recorded during the box-and-block test and reaching tasks using video analysis and inertial sensors. Single pulse TMS and electroencephalography will be used to investigate the changes in local cortical reactivity and in the interconnected areas. DISCUSSION: The presented trial shall evaluate with a multimodal approach the effects of sensorimotor network stimulation applied before a robot-assisted therapy training on functional recovery of the upper extremity after stroke. The combination of neuromodulation and robot-assisted therapy can promote an increase of cortical plasticity of sensorimotor areas followed by a clinical benefit in the motor function of the upper limb. TRIAL REGISTRATION: ClinicalTrials.gov NCT05478434. Registered on 28 Jul 2022.
Asunto(s)
Robótica , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Extremidad Superior , Recuperación de la Función , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
The aim of this study was to shed light on the neural substrate of conceptual representations starting from the construct of higher-order convergence zones and trying to evaluate the unitary or non-unitary nature of this construct. We used the 'Thematic and Taxonomic Semantic (TTS) task' to investigate (a) the neural substrate of stimuli belonging to biological and artifact categories, (b) the format of stimuli presentation, i.e., verbal or pictorial, and (c) the relation between stimuli, i.e., categorial or contextual. We administered anodal transcranial direct current stimulation (tDCS) to different brain structures during the execution of the TTS task. Twenty healthy participants were enrolled and divided into two groups, one investigating the role of the anterior temporal lobes (ATL) and the other the temporo-parietal junctions (TPJ). Each participant underwent three sessions of stimulation to facilitate a control condition and to investigate the role of both hemispheres. Results showed that ATL stimulation influenced all conceptual representations in relation to the format of presentation (i.e., left-verbal and right-pictorial). Moreover, ATL stimulation modulated living categories and taxonomic relations specifically, whereas TPJ stimulation did not influence semantic task performances.
RESUMEN
The combination of TMS and EEG has the potential to capture relevant features of Alzheimer's disease (AD) pathophysiology. We used a machine learning framework to explore time-domain features characterizing AD patients compared to age-matched healthy controls (HC). More than 150 time-domain features including some related to local and distributed evoked activity were extracted from TMS-EEG data and fed into a Random Forest (RF) classifier using a leave-one-subject out validation approach. The best classification accuracy, sensitivity, specificity and F1 score were of 92.95%, 96.15%, 87.94% and 92.03% respectively when using a balanced dataset of features computed globally across the brain. The feature importance and statistical analysis revealed that the maximum amplitude of the post-TMS signal, its Hjorth complexity and the amplitude of the TEP calculated in the window 45-80 ms after the TMS-pulse were the most relevant features differentiating AD patients from HC. TMS-EEG metrics can be used as a non-invasive tool to further understand the AD pathophysiology and possibly contribute to patients' classification as well as longitudinal disease tracking.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Imagen por Resonancia Magnética , Encéfalo , Biomarcadores , ElectroencefalografíaRESUMEN
OBJECTIVE: Neuronal excitation/inhibition (E/I) imbalance is a potential cause of neuronal network malfunctioning in Alzheimer's disease (AD), contributing to cognitive dysfunction. Here, we used a novel approach combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe cortical excitability in different brain areas known to be directly involved in AD pathology. METHODS: We performed TMS-EEG recordings targeting the left dorsolateral prefrontal cortex (l-DLPFC), the left posterior parietal cortex (l-PPC), and the precuneus (PC) in a large sample of patients with mild-to-moderate AD (n = 65) that were compared with a group of age-matched healthy controls (n = 21). RESULTS: We found that patients with AD are characterized by a regional cortical hyperexcitability in the PC and, to some extent, in the frontal lobe, as measured by TMS-evoked potentials. Notably, cortical excitability assessed over the l-PPC was comparable between the 2 groups. Furthermore, we found that the individual level of PC excitability was associated with the level of cognitive impairment, as measured with Mini-Mental State Examination, and with corticospinal fluid levels of Aß42 . INTERPRETATION: Our data provide novel evidence that precuneus cortical hyperexcitability is a key feature of synaptic dysfunction in patients with AD. The current results point to the combined approach of TMS and EEG as a novel promising technique to measure hyperexcitability in patients with AD. This index could represent a useful biomarker to stage disease severity and evaluate response to novel therapies. ANN NEUROL 2023;93:371-383.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Lóbulo Parietal , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Estimulación Magnética Transcraneal/métodosRESUMEN
Neural oscillations in the gamma frequency band have been identified as a fundament for synaptic plasticity dynamics and their alterations are central in various psychiatric and neurological conditions. Transcranial magnetic stimulation (TMS) and alternating electrical stimulation (tACS) may have a strong therapeutic potential by promoting gamma oscillations expression and plasticity. Here we applied intermittent theta-burst stimulation (iTBS), an established TMS protocol known to induce LTP-like cortical plasticity, simultaneously with transcranial alternating current stimulation (tACS) at either theta (θtACS) or gamma (γtACS) frequency on the dorsolateral prefrontal cortex (DLPFC). We used TMS in combination with electroencephalography (EEG) to evaluate changes in cortical activity on both left/right DLPFC and over the vertex. We found that simultaneous iTBS with γtACS but not with θtACS resulted in an enhancement of spectral gamma power, a trend in shift of individual peak frequency towards faster oscillations and an increase of local connectivity in the gamma band. Furthermore, the response to the neuromodulatory protocol, in terms of gamma oscillations and connectivity, were directly correlated with the initial level of cortical excitability. These results were specific to the DLPFC and confined locally to the site of stimulation, not being detectable in the contralateral DLPFC. We argue that the results described here could promote a new and effective method able to induce long-lasting changes in brain plasticity useful to be clinically applied to several psychiatric and neurological conditions.
Asunto(s)
Corteza Prefontal Dorsolateral , Estimulación Transcraneal de Corriente Directa , Corteza Prefrontal/fisiología , Estimulación Magnética Transcraneal/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Electroencefalografía/métodos , ElectricidadRESUMEN
Repetitive transcranial magnetic stimulation (rTMS) is emerging as a non-invasive therapeutic strategy in the battle against Alzheimer's disease. Alzheimer's disease patients primarily show alterations of the default mode network for which the precuneus is a key node. Here, we hypothesized that targeting the precuneus with TMS represents a promising strategy to slow down cognitive and functional decline in Alzheimer's disease patients. We performed a randomized, double-blind, sham-controlled, phase 2, 24-week trial to determine the safety and efficacy of precuneus stimulation in patients with mild-to-moderate Alzheimer's disease. Fifty Alzheimer's disease patients were randomly assigned in a 1:1 ratio to either receive precuneus or sham rTMS (mean age 73.7 years; 52% female). The trial included a 24-week treatment, with a 2-week intensive course in which rTMS (or sham) was applied daily five times per week, followed by a 22-week maintenance phase in which stimulation was applied once weekly. The Clinical Dementia Rating Scale-Sum of Boxes was selected as the primary outcome measure, in which post-treatment scores were compared to baseline. Secondary outcomes included score changes in the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Moreover, single-pulse TMS in combination with EEG was used to assess neurophysiological changes in precuneus cortical excitability and oscillatory activity. Our findings show that patients that received precuneus repetitive magnetic stimulation presented a stable performance of the Clinical Dementia Rating Scale-Sum of Boxes score, whereas patients treated with sham showed a worsening of their score. Compared with the sham stimulation, patients in the precuneus stimulation group also showed also significantly better performances for the secondary outcome measures, including the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Neurophysiological results showed that precuneus cortical excitability remained unchanged after 24 weeks in the precuneus stimulation group, whereas it was significantly reduced in the sham group. Finally, we found an enhancement of local gamma oscillations in the group treated with precuneus stimulation but not in patients treated with sham. We conclude that 24 weeks of precuneus rTMS may slow down cognitive and functional decline in Alzheimer's disease. Repetitive TMS targeting the default mode network could represent a novel therapeutic approach in Alzheimer's disease patients.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Masculino , Actividades Cotidianas , Estimulación Magnética Transcraneal/métodos , Lóbulo Parietal , Fenómenos MagnéticosRESUMEN
Transcranial Magnetic Stimulation (TMS) combined with EEG recordings (TMS-EEG) has shown great potential in the study of the brain and in particular of Alzheimer's Disease (AD). In this study, we propose an automatic method of determining the duration of TMS-induced perturbation of the EEG signal as a potential metric reflecting the brain's functional alterations. A preliminary study is conducted in patients with Alzheimer's disease (AD). Three metrics for characterizing the strength and duration of TMS-evoked EEG (TEP) activity are proposed and their potential in identifying AD patients from healthy controls was investigated. A dataset of TMS-EEG recordings from 17 AD and 17 healthy controls (HC) was used in our analysis. A Random Forest classification algorithm was trained on the extracted TEP metrics and its performance is evaluated in a leave-one-subject-out cross-validation. The created model showed promising results in identifying AD patients from HC with an accuracy, sensitivity and specificity of 69.32%, 72.23% and 66.41%, respectively. Clinical relevance- Three preliminary metrics were proposed to quantify the strength and duration of the response to TMS on EEG data. The proposed metrics were successfully used to identify Alzheimer's disease patients from healthy controls. These results proved the potential of this approach which will provide additional diagnostic value.
Asunto(s)
Enfermedad de Alzheimer , Estimulación Magnética Transcraneal , Enfermedad de Alzheimer/diagnóstico , Benchmarking , Encéfalo , Electroencefalografía , HumanosRESUMEN
Transcranial magnetic stimulation co-registered with electroencephalographic (TMS-EEG) has previously proven a helpful tool in the study of Alzheimer's disease (AD). In this work, we investigate the use of TMS-evoked EEG responses to classify AD patients from healthy controls (HC). By using a dataset containing 17AD and 17HC, we extract various time domain features from individual TMS responses and average them over a low, medium and high density EEG electrode set. Within a leave-one-subject-out validation scenario, the best classification performance for AD vs. HC was obtained using a high-density electrode with a Random Forest classifier. The accuracy, sensitivity and specificity were of 92.7%, 96.58% and 88.82% respectively. Clinical relevance- TMS-EEG responses were successfully used to identify Alzheimer's disease patients from healthy controls.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Diagnóstico Diferencial , Electroencefalografía , Humanos , Sensibilidad y Especificidad , Estimulación Magnética TranscranealRESUMEN
OBJECTIVE: In Alzheimer disease (AD) animal models, synaptic dysfunction has recently been linked to a disorder of high-frequency neuronal activity. In patients, a clear relation between AD and oscillatory activity remains elusive. Here, we attempt to shed light on this relation by using a novel approach combining transcranial magnetic stimulation and electroencephalography (TMS-EEG) to probe oscillatory activity in specific hubs of the frontoparietal network in a sample of 60 mild-to-moderate AD patients. METHODS: Sixty mild-to-moderate AD patients and 21 age-matched healthy volunteers (HVs) underwent 3 TMS-EEG sessions to assess cortical oscillations over the left dorsolateral prefrontal cortex, the precuneus, and the left posterior parietal cortex. To investigate the relations between oscillatory activity, cortical plasticity, and cognitive decline, AD patients underwent a TMS-based neurophysiological characterization and a cognitive evaluation at baseline. The latter was repeated after 24 weeks to monitor clinical evolution. RESULTS: AD patients showed a significant reduction of frontal gamma activity as compared to age-matched HVs. In addition, AD patients with a more prominent decrease of frontal gamma activity showed a stronger impairment of long-term potentiation-like plasticity and a more pronounced cognitive decline at subsequent follow-up evaluation at 24 weeks. INTERPRETATION: Our data provide novel evidence that frontal lobe gamma activity is dampened in AD patients. The current results point to the TMS-EEG approach as a promising technique to measure individual frontal gamma activity in patients with AD. This index could represent a useful biomarker to predict disease progression and to evaluate response to novel pharmacological therapies. ANN NEUROL 2022;92:464-475.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Electroencefalografía/métodos , Lóbulo Frontal , Humanos , Estimulación Magnética Transcraneal/métodosRESUMEN
When we look at our body parts, we are immediately aware that they belong to us and we rarely doubt about the integrity, continuity, and sense of ownership of our body. Despite this certainty, immersive virtual reality (IVR) may lead to a strong feeling of embodiment over an artificial body part seen from a first-person perspective (1PP). Although such feeling of ownership (FO) has been described in different situations, it is not yet understood how this phenomenon is generated at neural level. To track the real-time brain dynamics associated with FO, we delivered transcranial magnetic stimuli over the hand region in the primary motor cortex (M1) and simultaneously recorded electroencephalography (EEG) in 19 healthy volunteers (11 male/8 female) watching IVR renderings of anatomically plausible (full-limb) versus implausible (hand disconnected from the forearm) virtual limbs. Our data show that embodying a virtual hand is temporally associated with a rapid drop of cortical activity of the onlookers' hand region in the M1 contralateral to the observed hand. Spatiotemporal analysis shows that embodying the avatar's hand is also associated with fast changes of activity within an interconnected fronto-parietal circuit ipsilateral to the brain stimulation. Specifically, an immediate reduction of connectivity with the premotor area is paralleled by an enhancement in the connectivity with the posterior parietal cortex (PPC) which is related to the strength of ownership illusion ratings and thus likely reflects conscious feelings of embodiment. Our results suggest that changes of bodily representations are underpinned by a dynamic cross talk within a highly-plastic, fronto-parietal network.SIGNIFICANCE STATEMENT Observing an avatar's body part from a first-person perspective (1PP) induces an illusory embodiment over it. What remains unknown are the cortical dynamics underpinning the embodiment of artificial agents. To shed light on the physiological mechanisms of embodiment we used a novel approach that combines noninvasive stimulation of the cortical motor-hand area and whole-scalp electroencephalographic (EEG) recordings in people observing an embodied artificial limb. We found that just before the illusion started, there is a decrease of activity of the motor-hand area accompanied by an increase of connectivity with the parietal region ipsilateral to the stimulation that reflects the ratings of the embodiment illusion. Our results suggest that changes of bodily representations are underpinned by a dynamic cross talk within a fronto-parietal circuit.
Asunto(s)
Emociones/fisiología , Lóbulo Frontal/fisiología , Mano/fisiología , Lóbulo Parietal/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Realidad VirtualRESUMEN
Interhemispheric interactions in stroke patients are frequently characterized by abnormalities, in terms of balance and inhibition. Previous results showed an impressive variability, mostly given to the instability of motor-evoked potentials when evoked from the affected hemisphere. We aim to find reliable interhemispheric measures in stroke patients with a not-evocable motor-evoked potential from the affected hemisphere, by combining transcranial magnetic stimulation (TMS) and electroencephalography. Ninteen stroke patients (seven females; 61.26 ± 9.8 years) were studied for 6 months after a first-ever stroke in the middle cerebral artery territory. Patients underwent four evaluations: clinical, cortical, corticospinal, and structural. To test the reliability of our measures, the evaluations were repeated after 3 weeks. To test the sensitivity, 14 age-matched healthy controls were compared to stroke patients. In stroke patients, stimulation of the affected hemisphere did not result in any inhibition onto the unaffected. The stimulation of the unaffected hemisphere revealed a preservation of the inhibition mechanism onto the affected. This resulted in a remarkable interhemispheric imbalance, whereas this mechanism was steadily symmetric in healthy controls. This result was stable when cortical evaluation was repeated after 3 weeks. Importantly, patients with a better recovery of the affected hand strength were the ones with a more stable interhemispheric balance. Finally, we found an association between microstructural integrity of callosal fibers, suppression of interhemispheric TMS-evoked activity and interhemispheric connectivity. We provide direct and sensitive cortical measures of interhemispheric imbalance in stroke patients. These measures offer a reliable means of distinguishing healthy and pathological interhemispheric dynamics.
Asunto(s)
Corteza Cerebral/fisiopatología , Electroencefalografía , Potenciales Evocados Motores/fisiología , Mano/fisiopatología , Tractos Piramidales/fisiopatología , Accidente Cerebrovascular/fisiopatología , Estimulación Magnética Transcraneal , Adulto , Anciano , Conectoma , Femenino , Humanos , Infarto de la Arteria Cerebral Media/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana EdadRESUMEN
Importance: Impairment of dopaminergic transmission may contribute to cognitive dysfunction in Alzheimer disease (AD). Objective: To investigate whether therapy with dopaminergic agonists may affect cognitive functions in patients with AD. Design, Setting, and Participants: This phase 2, monocentric, randomized, double-blind, placebo-controlled trial was conducted in Italy. Patients with mild to moderate AD were enrolled between September 1, 2017, and December 31, 2018. Data were analyzed from July 1 to September 1, 2019. Interventions: A rotigotine 2 mg transdermal patch for 1 week followed by a 4 mg patch for 23 weeks (n = 47) or a placebo transdermal patch for 24 weeks (n = 47). Main Outcomes and Measures: The primary end point was change from baseline on the Alzheimer Disease Assessment Scale-Cognitive Subscale. Secondary end points were changes in Frontal Assessment Battery, Alzheimer Disease Cooperative Study-Activities of Daily Living, and Neuropsychiatric Inventory scores. Prefrontal cortex activity was evaluated by transcranial magnetic stimulation combined with electroencephalography. Results: Among 94 patients randomized (mean [SD] age, 73.9 [5.6] years; 58 [62%] women), 78 (83%) completed the study. Rotigotine, as compared with placebo, had no significant effect on the primary end point: estimated mean change in Alzheimer Disease Assessment Scale-Cognitive Subscale score was 2.92 (95% CI, 2.51-3.33) for the rotigotine group and 2.66 (95% CI, 2.31-3.01) for the placebo group. For the secondary outcomes, there were significant estimated mean changes between groups for Alzheimer Disease Cooperative Study-Activities of Daily Living score (-3.32 [95% CI, -4.02 to -2.62] for rotigotine and -7.24 [95% CI, -7.84 to -6.64] for placebo) and Frontal Assessment Battery score (0.48 [95% CI, 0.31 to 0.65] for rotigotine and -0.66 [95% CI, -0.80 to -0.52] for placebo). There was no longitudinal change in Neuropsychiatric Inventory scores (1.64 [95% CI, 1.06-2.22] for rotigotine and 1.26 [95% CI, 0.77-1.75] for placebo group). Neurophysiological analysis of electroencephalography results indicated that prefrontal cortical activity increased in rotigotine but not in the placebo group. Adverse events were more common in the rotigotine group, with 11 patients dropping out compared with 5 in the placebo group. Conclusions and Relevance: In this randomized clinical trial, rotigotine treatment did not significantly affect global cognition in patients with mild to moderate AD; however, improvement was observed in cognitive functions highly associated with the frontal lobe and in activities of daily living. These findings suggest that treatment with the dopaminergic agonist rotigotine may reduce symptoms associated with frontal lobe cognitive dysfunction and thus may delay the impairment of activities of daily living. Trial Registration: ClinicalTrials.gov Identifier: NCT03250741.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cognición/efectos de los fármacos , Nootrópicos/uso terapéutico , Tetrahidronaftalenos/uso terapéutico , Tiofenos/uso terapéutico , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Femenino , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Resultado del TratamientoRESUMEN
The cerebellum plays a critical role in promoting learning of new motor tasks, which is an essential function for motor recovery. Repetitive transcranial magnetic stimulation (rTMS) of the cerebellum can be used to enhance learning. In this study, we investigated the effects of cerebellar intermittent theta burst stimulation (c-iTBS), a high-frequency rTMS protocol, on visuo-motor learning in a sample of hemiparetic patients due to recent stroke in the territory of the contralateral middle cerebral artery. Eight stroke patients were enrolled for the purposes of the study in the chronic stage of recovery (i.e., at least 6 months after stroke). In two sessions, Patients were randomly assigned to treatment with real or sham c-iTBS applied over the cerebellar hemisphere ipsilateral to the affected body side. c-iTBS was applied immediately before the learning phase of a visuo-motor adaptation task. Real, but not sham, c-iTBS improved visuo-motor learning as revealed by an increased performance in of the learning phase of the visuo-moto adaptation task. Moreover, we also found that real but not sham c-iTBS induced a sustained improvement in the re-adaptation of the recently learned skill (i.e., when patients were re-tested after 30 min). Taken together, these data point to c-iTBS as a potential novel strategy to promote motor learning in patients with stroke.
Asunto(s)
Cerebelo/fisiopatología , Aprendizaje/fisiología , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/fisiopatología , Corteza Motora/fisiología , Proyectos Piloto , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Ritmo Teta/fisiología , Estimulación Magnética Transcraneal/métodosRESUMEN
Disagreement exists regarding representational and connectionist interpretations of semantic knowledge subserved by the right versus left anterior temporal lobes (ATLs). These interpretations predict a different pattern of impairment in patients with a right unilateral ATL lesion. We conducted a neuropsychological study of a selective semantic pictorial defect exhibited by a 57-year-old man who had undergone a right temporal lobectomy due to the presence of a glioblastoma. The patient was given the Thematic and Taxonomic Semantic task, in which individuals must select, within triplets of words or pictures, the best associates of living or nonliving stimuli, related by thematic or taxonomic links, and presented in the verbal or pictorial modality. The selectivity of the defect was documented by a comparison between the results obtained by our patient and those obtained by healthy controls on living items and on pictures with a thematic relation. The selectivity of the defect was confirmed by a within-subject analysis of the results obtained on all of the task's triplets and those obtained on the stimuli representing living entities with a taxonomic relation. The selectivity of this semantic pictorial defect mainly concerning living entities is consistent with the representational account of semantic defects observed in our patient. In the present case report, a right temporal lobectomy resulted in a selective semantic pictorial defect with the qualitative features predicted by the representational account of semantic defects observed after a unilateral ATL lesion.
Asunto(s)
Lobectomía Temporal Anterior/métodos , Neoplasias Encefálicas/cirugía , Semántica , Lóbulo Temporal/cirugía , Humanos , Masculino , Persona de Mediana EdadRESUMEN
The cerebellum is strongly implicated in learning new motor skills. Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation, can be used to influence cerebellar activity. Our aim was to explore the potential of cerebellar TBS in modulating visuo-motor adaptation, a form of motor learning, in young healthy subjects. Cerebellar TBS was applied immediately before the learning phase of a visuo-motor adaptation task (VAT), in two different experiments. Firstly, we evaluated the behavioral effects of continuous (cTBS), intermittent (iTBS) or sham TBS on the learning, re-adaptation and de-adaptation phases of VAT. Subsequently, we investigated the changes induced by iTBS or sham TBS on motor cortical activity related to each phase of VAT, as measured by concomitant TMS/EEG recordings. We found that cerebellar TBS induced a robust bidirectional modulation of the VAT performance. More specifically, cerebellar iTBS accelerated visuo-motor adaptation, by speeding up error reduction in response to a novel perturbation. This gain of function was still maintained when the novel acquired motor plan was tested during a subsequent phase of re-adaptation. On the other hand, cerebellar cTBS induced the opposite effect, slowing the rate of error reduction in both learning and re-adaptation phases. Additionally, TMS/EEG recordings showed that cerebellar iTBS induced specific changes of cortical activity in the interconnected motor networks. The improved performance was accompanied by an increase of TMS-evoked cortical activity and a generalized desynchronization of TMS-evoked cortical oscillations. Taken together, our behavioral and neurophysiological findings provide the first-time multimodal evidence of the potential efficacy of cerebellar TBS in improving motor learning, by promoting successful cerebellar-cortical reorganization.
Asunto(s)
Adaptación Fisiológica/fisiología , Ondas Encefálicas/fisiología , Cerebelo/fisiología , Sincronización Cortical/fisiología , Aprendizaje/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Estimulación Magnética Transcraneal , Adulto , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
OBJECTIVE: To validate two indexes of interhemispheric signal propagation (ISP) and balance (IHB) by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG). METHODS: We used TMS-EEG to non-invasively stimulate the two hemispheres of 50 healthy volunteers and measured interhemispheric dynamics in terms of ISP and IHB. We repeated our evaluation after three weeks to assess the reliability of our indexes. We also tested whether our TMS-EEG measures were correlated with traditional interhemispheric inhibition (IHI), as measured with motor-evoked potentials (MEPs). RESULTS: Our main results showed that ISP and IHB (1) have a high reproducibility among all the participants tested; (2) have a high test-retest reliability (3) are linearly correlated with IHI, as measured with MEPs. CONCLUSIONS: The main contribution of this study lies in the proposal of new TMS-EEG cortical measures of interhemispheric dynamics and in their validation in terms of intra- and inter-subject reliability. We also provide the first demonstration of the correlation between ISP and IHI. SIGNIFICANCE: Our results are relevant for the investigation of interhemispheric dynamics in clinical populations where MEPs are not reliable.
Asunto(s)
Cerebro/fisiología , Electroencefalografía/métodos , Estimulación Magnética Transcraneal/métodos , Adulto , Factores de Edad , Anciano , Femenino , Lateralidad Funcional , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Factores de TiempoRESUMEN
Importance: Gait and balance impairment is associated with poorer functional recovery after stroke. The cerebellum is known to be strongly implicated in the functional reorganization of motor networks in patients with stroke, especially for gait and balance functions. Objective: To determine whether cerebellar intermittent θ-burst stimulation (CRB-iTBS) can improve balance and gait functions in patients with hemiparesis due to stroke. Design, Setting, Participants: This randomized, double-blind, sham-controlled phase IIa trial investigated efficacy and safety of a 3-week treatment of CRB-iTBS coupled with physiotherapy in promoting gait and balance recovery in patients with stroke. Thirty-six patients with consecutive ischemic chronic stroke in the territory of the contralateral middle cerebral artery with hemiparesis were recruited from a neuro-rehabilitation hospital. Participants were screened and enrolled from March 2013 to June 2017. Intention-to-treat analysis was performed. Interventions: Patients were randomly assigned to treatment with CRB-iTBS or sham iTBS applied over the cerebellar hemisphere ipsilateral to the affected body side immediately before physiotherapy daily during 3 weeks. Main Outcomes and Measures: The primary outcome was the between-group difference in change from baseline in the Berg Balance Scale. Secondary exploratory measures included the between-group difference in change from baseline in Fugl-Meyer Assessment scale, Barthel Index, and locomotion assessment with gait analysis and cortical activity measured by transcranial magnetic stimulation in combination with electroencephalogram. Results: A total of 34 patients (mean [SD] age, 64 [11.3] years; 13 women [38.2%]) completed the study. Patients treated with CRB-iTBS, but not with sham iTBS, showed an improvement of gait and balance functions, as revealed by a pronounced increase in the mean (SE) Berg Balance Scale score (baseline: 34.5 [3.4]; 3 weeks after treatment: 43.4 [2.6]; 3 weeks after the end of treatment: 47.5 [1.8]; P < .001). No overall treatment-associated differences were noted in the Fugl-Meyer Assessment (mean [SE], baseline: 163.8 [6.8]; 3 weeks after treatment: 171.1 [7.2]; 3 weeks after the end of treatment: 173.5 [6.9]; P > .05) and Barthel Index scores (mean [SE], baseline: 71.1 [4.92]; 3 weeks after treatment: 88.8 [2.1]; 3 weeks after the end of treatment: 92.2 [2.4]; P > .05). Patients treated with CRB-iTBS, but not sham iTBS, showed a reduction of step width at the gait analysis (mean [SE], baseline: 16.8 [4.8] cm; 3 weeks after treatment: 14.3 [6.2] cm; P < .05) and an increase of neural activity over the posterior parietal cortex. Conclusions and Relevance: Cerebellar intermittent θ-burst stimulation promotes gait and balance recovery in patients with stroke by acting on cerebello-cortical plasticity. These results are important to increase the level of independent walking and reduce the risk of falling. Trial Registration: ClinicalTrials.gov Identifier: NCT03456362.
Asunto(s)
Isquemia Encefálica/terapia , Cerebelo/fisiopatología , Trastornos Neurológicos de la Marcha/terapia , Paresia/terapia , Equilibrio Postural/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Anciano , Isquemia Encefálica/complicaciones , Terapia Combinada , Método Doble Ciego , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/fisiopatología , Paresia/etiología , Placebos , Accidente Cerebrovascular/complicaciones , Resultado del TratamientoRESUMEN
Memory loss is one of the first symptoms of typical Alzheimer's disease (AD), for which there are no effective therapies available. The precuneus (PC) has been recently emphasized as a key area for the memory impairment observed in early AD, likely due to disconnection mechanisms within large-scale networks such as the default mode network (DMN). Using a multimodal approach we investigated in a two-week, randomized, sham-controlled, double-blinded trial the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the PC on cognition, as measured by the Alzheimer Disease Cooperative Study Preclinical Alzheimer Cognitive Composite in 14 patients with early AD (7 females). TMS combined with electroencephalography (TMS-EEG) was used to detect changes in brain connectivity. We found that rTMS of the PC induced a selective improvement in episodic memory, but not in other cognitive domains. Analysis of TMS-EEG signal revealed an increase of neural activity in patients' PC, an enhancement of brain oscillations in the beta band and a modification of functional connections between the PC and medial frontal areas within the DMN. Our findings show that high-frequency rTMS of the PC is a promising, non-invasive treatment for memory dysfunction in patients at early stages of AD. This clinical improvement is accompanied by modulation of brain connectivity, consistently with the pathophysiological model of brain disconnection in AD.
Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Ritmo beta/fisiología , Neuroimagen Funcional/métodos , Trastornos de la Memoria/fisiopatología , Memoria Episódica , Lóbulo Parietal/fisiopatología , Síntomas Prodrómicos , Estimulación Magnética Transcraneal/métodos , Anciano , Femenino , Humanos , MasculinoRESUMEN
OBJECTIVE: During EEG the discharge of TMS generates a long-lasting decay artefact (DA) that makes the analysis of TMS-evoked potentials (TEPs) difficult. Our aim was twofold: (1) to describe how the DA affects the recorded EEG and (2) to develop a new adaptive detrend algorithm (ADA) able to correct the DA. METHODS: We performed two experiments testing 50 healthy volunteers. In experiment 1, we tested the efficacy of ADA by comparing it with two commonly-used independent component analysis (ICA) algorithms. In experiment 2, we further investigated the efficiency of ADA and the impact of the DA evoked from TMS over frontal, motor and parietal areas. RESULTS: Our results demonstrated that (1) the DA affected the EEG signal in the spatiotemporal domain; (2) ADA was able to completely remove the DA without affecting the TEP waveforms; (3). ICA corrections produced significant changes in peak-to-peak TEP amplitude. CONCLUSIONS: ADA is a reliable solution for the DA correction, especially considering that (1) it does not affect physiological responses; (2) it is completely data-driven and (3) its effectiveness does not depend on the characteristics of the artefact and on the number of recording electrodes. SIGNIFICANCE: We proposed a new reliable algorithm of correction for long-lasting TMS-EEG artifacts.