Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cytotherapy ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38958627

RESUMEN

Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.

2.
Proc Natl Acad Sci U S A ; 119(49): e2207824119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454756

RESUMEN

Revealing the molecular events associated with reprogramming different somatic cell types to pluripotency is critical for understanding the characteristics of induced pluripotent stem cell (iPSC) therapeutic derivatives. Inducible reprogramming factor transgenic cells or animals-designated as secondary (2°) reprogramming systems-not only provide excellent experimental tools for such studies but also offer a strategy to study the variances in cellular reprogramming outcomes due to different in vitro and in vivo environments. To make such studies less cumbersome, it is desirable to have a variety of efficient reprogrammable mouse systems to induce successful mass reprogramming in somatic cell types. Here, we report the development of two transgenic mouse lines from which 2° cells reprogram with unprecedented efficiency. These systems were derived by exposing primary reprogramming cells containing doxycycline-inducible Yamanaka factor expression to a transient interruption in transgene expression, resulting in selection for a subset of clones with robust transgene response. These systems also include reporter genes enabling easy readout of endogenous Oct4 activation (GFP), indicative of pluripotency, and reprogramming transgene expression (mCherry). Notably, somatic cells derived from various fetal and adult tissues from these 2° mouse lines gave rise to highly efficient and rapid reprogramming, with transgene-independent iPSC colonies emerging as early as 1 wk after induction. These mouse lines serve as a powerful tool to explore sources of variability in reprogramming and the mechanistic underpinnings of efficient reprogramming systems.


Asunto(s)
Reprogramación Celular , Doxiciclina , Animales , Ratones , Ratones Transgénicos , Reprogramación Celular/genética , Transgenes , Células Clonales , Doxiciclina/farmacología
3.
Front Cell Dev Biol ; 10: 910040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092714

RESUMEN

The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.

4.
STAR Protoc ; 3(2): 101383, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35664254

RESUMEN

Here, we describe a series of protocols detailing the steps for evaluating SARS-CoV-2 infection in models of the human eye. Included are protocols for whole eye organoid differentiation, SARS-CoV-2 infection, and processing organoids for single-cell RNA sequencing. Additional protocols describe how to dissect and culture adult human ocular cells from cadaver donor eyes and how to compare infection of SARS-CoV-2 and the presence of SARS-CoV-2 entry factors using qPCR, immunofluorescence, and plaque assays. For complete details on the use and execution of this protocol, please refer to Eriksen et al. (2021).


Asunto(s)
COVID-19 , Adulto , Ojo , Humanos , Organoides , SARS-CoV-2
5.
JMIR Hum Factors ; 8(4): e25453, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34751664

RESUMEN

BACKGROUND: Low back pain (LBP) affects nearly 4 out of 5 individuals during their lifetime and is the leading cause of disability globally. Digital therapeutics are emerging as effective treatment options for individuals experiencing LBP. Despite the growth of evidence demonstrating the benefits of these therapeutics in reducing LBP and improving functional outcomes, little data has been systematically collected on their safety profiles. OBJECTIVE: This study aims to evaluate the safety profile of a multidisciplinary digital therapeutic for LBP, the Kaia App, by performing a comprehensive assessment of reported adverse events (AEs) by users as captured by a standardized process for postmarket surveillance. METHODS: All users of a multidisciplinary digital app that includes physiotherapy, mindfulness techniques, and education for LBP (Kaia App) from 2018 to 2019 were included. Relevant messages sent by users via the app were collected according to a standard operating procedure regulating postmarket surveillance of the device. These messages were then analyzed to determine if they described an adverse event (AE). Messages describing an AE were then categorized based on the type of AE, its seriousness, and its relatedness to the app, and they were described by numerical counts. User demographics, including age and gender, and data on app use were collected and evaluated to determine if they were risk factors for increased AE reporting. RESULTS: Of the 138,337 active users of the Kaia App, 125 (0.09%) reported at least one AE. Users reported 0.00014 AEs per active day on the app. The most common nonserious AE reported was increased pain. Other nonserious AEs reported included muscle issues, unpleasant sensations, headache, dizziness, and sleep disturbances. One serious AE, a surgery, was reported. Details of the event and its connection to the intervention were not obtainable, as the user did not provide more information when asked to do so; therefore, it was considered to be possibly related to the intervention. There was no relationship between gender and AE reporting (P>.99). Users aged 25 to 34 years had reduced odds (odds ratio [OR] 0.31, 95% CI 0.08-0.95; P=.03) of reporting AEs, while users aged 55 to 65 years (OR 2.53, 95% CI 1.36-4.84, P=.002) and ≥75 years (OR 4.36, 95% CI 1.07-13.26; P=.02) had increased odds. AEs were most frequently reported by users who had 0 to 99 active days on the app, and less frequently reported by users with more active days on the app. CONCLUSIONS: This study on the Kaia App provides the first comprehensive assessment of reported AEs associated with real-world use of digital therapeutics for lower back pain. The overall rate of reported AEs was very low, but significant reporting bias is likely to be present. The AEs reported were generally consistent with those described for in-person therapies for LBP.

6.
Nat Commun ; 12(1): 5675, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584087

RESUMEN

The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we study conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells.


Asunto(s)
Diferenciación Celular/genética , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Persona de Mediana Edad , Retina/citología , Análisis de Secuencia de ARN/métodos , Especificidad de la Especie , Porcinos
7.
Cell Stem Cell ; 28(7): 1205-1220.e7, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34022129

RESUMEN

The SARS-CoV-2 pandemic has caused unparalleled disruption of global behavior and significant loss of life. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible routes of entry is essential. While aerosol transmission is thought to be the primary route of spread, viral particles have been detected in ocular fluid, suggesting that the eye may be a vulnerable point of viral entry. To this end, we confirmed SARS-CoV-2 entry factor and antigen expression in post-mortem COVID-19 patient ocular surface tissue and observed productive viral replication in cadaver samples and eye organoid cultures, most notably in limbal regions. Transcriptional analysis of ex vivo infected ocular surface cells and hESC-derived eye cultures revealed robust induction of NF-κB in infected cells as well as diminished type I/III interferon signaling. Together these data suggest that the eye can be directly infected by SARS-CoV-2 and implicate limbus as a portal for viral entry.


Asunto(s)
COVID-19 , Células Madre Embrionarias Humanas , Adulto , Epitelio , Humanos , Pandemias , SARS-CoV-2
8.
SSRN ; : 3650574, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32742243

RESUMEN

The outbreak of COVID-19 caused by the SARS-CoV-2 virus has created an unparalleled disruption of global behavior and a significant loss of human lives. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible viral entry routes is essential. As aerosol transmission is thought to be the primary route of spread, we sought to investigate whether the eyes are potential entry portals for SARS-CoV-2. While virus has been detected in the eye, in order for this mucosal membrane to be a bone fide entry source SARS-CoV-2 would need the capacity to productively infect ocular surface cells.  As such, we conducted RNA sequencing in ocular cells isolated from adult human cadaver donor eyes as well as from a pluripotent stem cell-derived whole eye organoid model to evaluate the expression of ACE2 and TMPRSS2, essential proteins that mediate SARS-CoV-2 viral entry. We also infected eye organoids and adult human ocular cells with SARS-CoV-2 and evaluated virus replication and the host response to infection. We found the limbus was most susceptible to infection, whereas the central cornea exhibited only low levels of replication. Transcriptional profiling of the limbus upon SARS-CoV-2 infection, found that while type I or III interferons were not detected in the lung epithelium, a significant inflammatory response was mounted. Together these data suggest that the human eye can be directly infected by SARS-CoV-2 and thus is a route warranting protection. Funding: The National Eye Institute (NEI), Bethesda, MD, USA, extramural grant 1R21EY030215-01 and the Icahn School of Medicine at Mount Sinai supported this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA