Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38247945

RESUMEN

Bioprinting provides a powerful tool for regenerative medicine, as it allows tissue construction with a patient's specific geometry. However, tissue culture and maturation, commonly supported by dynamic bioreactors, are needed. We designed a workflow that creates an implant-specific bioreactor system, which is easily producible and customizable and supports cell cultivation and tissue maturation. First, a bioreactor was designed and different tissue geometries were simulated regarding shear stress and nutrient distribution to match cell culture requirements. These tissues were then directly bioprinted into the 3D-printed bioreactor. To prove the ability of cell maintenance, C2C12 cells in two bioinks were printed into the system and successfully cultured for two weeks. Next, human mesenchymal stem cells (hMSCs) were successfully differentiated toward an adipocyte lineage. As the last step of the presented strategy, we developed a prototype of an automated mobile docking station for the bioreactor. Overall, we present an open-source bioreactor system that is adaptable to a wound-specific geometry and allows cell culture and differentiation. This interdisciplinary roadmap is intended to close the gap between the lab and clinic and to integrate novel 3D-printing technologies for regenerative medicine.

2.
Adv Mater ; 34(10): e2106780, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933407

RESUMEN

The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber-to-fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun-based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen-gel-based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Tejido Conectivo , Matriz Extracelular/química , Piel , Andamios del Tejido/química
3.
PLoS Negl Trop Dis ; 14(11): e0008503, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151944

RESUMEN

Onchocerciasis also known as river blindness is a neglected tropical disease and the world's second-leading infectious cause of blindness in humans; it is caused by Onchocerca volvulus. Current treatment with ivermectin targets microfilariae and transmission and does not kill the adult parasites, which reside within subcutaneous nodules. To support the development of macrofilaricidal drugs that target the adult worm to further support the elimination of onchocerciasis, an in-depth understanding of O. volvulus biology especially the factors that support the longevity of these worms in the human host (>10 years) is required. However, research is hampered by a lack of access to adult worms. O. volvulus is an obligatory human parasite and no small animal models that can propagate this parasite were successfully developed. The current optimized 2-dimensional (2-D) in vitro culturing method starting with O. volvulus infective larvae does not yet support the development of mature adult worms. To overcome these limitations, we have developed and applied 3-dimensional (3-D) culture systems with O. volvulus larvae that simulate the human in vivo niche using in vitro engineered skin and adipose tissue. Our proof of concept studies have shown that an optimized indirect co-culture of in vitro skin tissue supported a significant increase in growth of the fourth-stage larvae to the pre-adult stage with a median length of 816-831 µm as compared to 767 µm of 2-D cultured larvae. Notably, when larvae were co-cultured directly with adipose tissue models, a significant improvement for larval motility and thus fitness was observed; 95% compared to 26% in the 2-D system. These promising co-culture concepts are a first step to further optimize the culturing conditions and improve the long-term development of adult worms in vitro. Ultimately, it could provide the filarial research community with a valuable source of O. volvulus worms at various developmental stages, which may accelerate innovative unsolved biomedical inquiries into the parasite's biology.


Asunto(s)
Antiparasitarios/uso terapéutico , Órganos Bioartificiales/parasitología , Desarrollo de Medicamentos/métodos , Onchocerca volvulus/crecimiento & desarrollo , Oncocercosis Ocular/tratamiento farmacológico , Piel/parasitología , África , Animales , Humanos , Ivermectina/uso terapéutico , Microfilarias/efectos de los fármacos , Onchocerca volvulus/efectos de los fármacos , Oncocercosis Ocular/patología , Técnicas de Cultivo de Órganos , Prueba de Estudio Conceptual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA