RESUMEN
Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Recurrencia Local de Neoplasia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Microambiente Tumoral , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Dinaminas/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológicoRESUMEN
Cell competition, a fitness-sensing process, is essential for tissue homeostasis. Using cancer metastatic latency models, we show that cell competition results in the displacement of latent metastatic (Lat-M) cells from the primary tumor. Lat-M cells resist anoikis and survive as residual metastatic disease. A memodeled extracellular matrix facilitates Lat-M cell displacement and survival in circulation. Disrupting cell competition dynamics by depleting secreted protein and rich in cysteine (SPARC) reduced displacement from orthotopic tumors and attenuated metastases. In contrast, depletion of SPARC after extravasation in lung-resident Lat-M cells increased metastatic outgrowth. Furthermore, multiregional transcriptomic analyses of matched primary tumors and metachronous metastases from patients with kidney cancer identified tumor subclones with Lat-M traits. Kidney cancer enriched for these Lat-M traits had a rapid onset of metachronous metastases and significantly reduced disease-free survival. Thus, an unexpected consequence of cell competition is the displacement of cells with Lat-M potential, thereby shaping metastatic latency and relapse. SIGNIFICANCE: We demonstrate that cell competition within the primary tumor results in the displacement of Lat-M cells. We further show the impact of altering cell competition dynamics on metastatic incidence that may guide strategies to limit metastatic recurrences. This article is highlighted in the In This Issue feature, p. 1.
Asunto(s)
Herpesvirus Humano 1 , Neoplasias Renales , Humanos , Competencia Celular , Latencia del Virus , Recurrencia Local de Neoplasia , Neoplasias Renales/genéticaRESUMEN
Background: Immunocompromised (IC) patients show diminished immune response to COVID-19 mRNA vaccines (Co-mV). To date, there is no 'empirical' evidence to link the perturbation of translation, a rate-limiting step for mRNA vaccine efficiency (VE), to the dampened response of Co-mV. Materials and methods: Impact of immunosuppressants (ISs), tacrolimus (T), mycophenolate (M), rapamycin/sirolimus (S), and their combinations on Pfizer Co-mV translation were determined by the Spike (Sp) protein expression following Co-mV transfection in HEK293 cells. In vivo impact of ISs on SARS-CoV-2 spike specific antigen (SpAg) and associated antibody levels (IgGSp) in serum were assessed in Balb/c mice after two doses (2D) of the Pfizer vaccine. Spike Ag and IgGSp levels were assessed in 259 IC patients and 50 healthy controls (HC) who received 2D of Pfizer or Moderna Co-mV as well as in 67 immunosuppressed solid organ transplant (SOT) patients and 843 non-transplanted (NT) subjects following three doses (3D) of Co-mV. Higher Co-mV concentrations and transient drug holidays were evaluated. Results: We observed significantly lower IgGSP response in IC patients (p<0.0001) compared to their matched controls in 2D and 3D Co-mV groups. IC patients on M or S showed a profound dampening of IgGSP response relative to those that were not on these drugs. M and S, when used individually or in combination, significantly attenuated the Co-mV-induced Sp expression, whereas T did not exert significant influence. Sirolimus combo pretreatment in vivo significantly attenuated the Co-mV induced IgMSp and IgGSp production, which correlated with a decreasing trend in the early levels (after day 1) of Co-mV induced Sp immunogen levels. Neither higher Co-mV concentrations (6µg) nor withholding S for 1-day could overcome the inhibition of Sp protein levels. Interestingly, 3-days S holiday or using T alone rescued Sp levels in vitro. Conclusions: This is the first study to demonstrate that ISs, sirolimus and mycophenolate inhibited Co-mV-induced Sp protein synthesis via translation repression. Selective use of tacrolimus or drug holiday of sirolimus can be a potential means to rescue translation-dependent Sp protein production. These findings lay a strong foundation for guiding future studies aimed at improving Co-mV responses in high-risk IC patients.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Ratones , Animales , Humanos , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Células HEK293 , COVID-19/prevención & control , SARS-CoV-2 , Inmunoglobulina G , Sirolimus/farmacología , Sirolimus/uso terapéutico , Vacunas de ARNmRESUMEN
Long noncoding RNAs have been implicated in many of the hallmarks of cancer. Herein, we found that the expression of lncRNA152 (lnc152; a.k.a. DRAIC), which we annotated previously, is highly upregulated in luminal breast cancer (LBC) and downregulated in triple-negative breast cancer (TNBC). Knockdown of lnc152 promotes cell migration and invasion in LBC cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In mice, lnc152 inhibited the growth of TNBC cell xenografts, as well as metastasis of TNBC cells in an intracardiac injection model. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes controlling angiogenesis. Using pull down assays followed by LC/MS-MS, we identified RBM47, a known tumor suppressor in breast cancer, as a lnc152-interacting protein. The effects of lnc152 in TNBC cells are mediated, in part, by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC. IMPLICATIONS: This study identifies lncRNA152 as an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC by upregulating the expression of the tumor suppressor RBM47. As such, lncRNA152 may serve as a biomarker to track aggressiveness of breast cancer, as well as therapeutic target for treating TNBC.
Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Invasividad Neoplásica/genética , Neovascularización Patológica/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/patología , ARN Largo no Codificante/genéticaRESUMEN
Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration-approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.
Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Humanos , Mutación , Dominios Proteicos , Transcripción GenéticaRESUMEN
Analyzing the metabolic dependencies of tumor cells is vital for cancer diagnosis and treatment. Here, we describe a protocol for 13C-stable glucose and glutamine isotope tracing in mice HER2+ breast cancer brain metastatic lesions. We describe how to inject cancer cells intracardially to generate brain metastatic lesions in mice. We then detail how to perform 13C-stable isotope infusion in mice with established brain metastasis. Finally, we outline steps for sample collection, processing for metabolite extraction, and analyzing mass spectrometry data. For complete details on the use and execution of this protocol, please refer to Parida et al. (2022).
Asunto(s)
Neoplasias Encefálicas , Metabolómica , Animales , Neoplasias Encefálicas/diagnóstico , Marcaje Isotópico/métodos , Isótopos , Espectrometría de Masas , Metabolómica/métodos , RatonesRESUMEN
HER2+ breast cancer patients are presented with either synchronous (S-BM), latent (Lat), or metachronous (M-BM) brain metastases. However, the basis for disparate metastatic fitness among disseminated tumor cells of similar oncotype within a distal organ remains unknown. Here, employing brain metastatic models, we show that metabolic diversity and plasticity within brain-tropic cells determine metastatic fitness. Lactate secreted by aggressive metastatic cells or lactate supplementation to mice bearing Lat cells limits innate immunosurveillance and triggers overt metastasis. Attenuating lactate metabolism in S-BM impedes metastasis, while M-BM adapt and survive as residual disease. In contrast to S-BM, Lat and M-BM survive in equilibrium with innate immunosurveillance, oxidize glutamine, and maintain cellular redox homeostasis through the anionic amino acid transporter xCT. Moreover, xCT expression is significantly higher in matched M-BM brain metastatic samples compared to primary tumors from HER2+ breast cancer patients. Inhibiting xCT function attenuates residual disease and recurrence in these preclinical models.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Femenino , Humanos , RatonesRESUMEN
Metastasis is the principal cause of cancer related deaths. Tumor invasion is essential for metastatic spread. However, determinants of invasion are poorly understood. We addressed this knowledge gap by leveraging a unique attribute of kidney cancer. Renal tumors invade into large vessels forming tumor thrombi (TT) that migrate extending sometimes into the heart. Over a decade, we prospectively enrolled 83 ethnically-diverse patients undergoing surgical resection for grossly invasive tumors at UT Southwestern Kidney Cancer Program. In this study, we perform comprehensive histological analyses, integrate multi-region genomic studies, generate in vivo models, and execute functional studies to define tumor invasion and metastatic competence. We find that invasion is not always associated with the most aggressive clone. Driven by immediate early genes, invasion appears to be an opportunistic trait attained by subclones with diverse oncogenomic status in geospatial proximity to vasculature. We show that not all invasive tumors metastasize and identify determinants of metastatic competency. TT associated with metastases are characterized by higher grade, mTOR activation and a particular immune contexture. Moreover, TT grade is a better predictor of metastasis than overall tumor grade, which may have implications for clinical practice.
Asunto(s)
Carcinoma de Células Renales/secundario , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Trombosis/genética , Anciano , Animales , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Riñón/irrigación sanguínea , Riñón/patología , Neoplasias Renales/complicaciones , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Masculino , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Estudios Prospectivos , RNA-Seq , Factores de Riesgo , Trombosis/patología , Secuenciación del Exoma , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Metastasis is the major cause of mortality in patients with breast cancer. Many signaling pathways have been linked to cancer invasiveness, but blockade of few protein components has succeeded in reducing metastasis. Thus, identification of proteins contributing to invasion that are manipulable by small molecules may be valuable in inhibiting spread of the disease. The protein kinase with no lysine (K) 1 (WNK1) has been suggested to induce migration of cells representing a range of cancer types. Analyses of mouse models and patient data have implicated WNK1 as one of a handful of genes uniquely linked to invasive breast cancer. Here, we present evidence that inhibition of WNK1 slows breast cancer metastasis. We show that depletion or inhibition of WNK1 reduces migration of several breast cancer cell lines in wound healing assays and decreases invasion in collagen matrices. Furthermore, WNK1 depletion suppresses expression of AXL, a tyrosine kinase implicated in metastasis. Finally, we demonstrate that WNK inhibition in mice attenuates tumor progression and metastatic burden. These data showing reduced migration, invasion, and metastasis upon WNK1 depletion in multiple breast cancer models suggest that WNK1 contributes to the metastatic phenotype, and that WNK1 inhibition may offer a therapeutic avenue for attenuating progression of invasive breast cancers.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Imidazoles/farmacología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Pirrolidinas/farmacología , Células Tumorales Cultivadas , Proteína Quinasa Deficiente en Lisina WNK 1/antagonistas & inhibidores , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Metastatic relapse is observed in cancer patients with no clinical evidence of disease for months to decades after initial diagnosis and treatment. Disseminated cancer cells that are capable of entering reversible cell cycle arrest are believed to be responsible for these late metastatic relapses. Dynamic interactions between the latent disseminated tumor cells and their surrounding microenvironment aid cancer cell survival and facilitate escape from immune surveillance. Here, we highlight findings from preclinical models that provide a conceptual framework to define and target the latent metastatic phase of tumor progression. The hope is by identifying patients harboring latent metastatic cells and providing therapeutic options to eliminate metastatic seeds prior to their emergence will result in long lasting cures.
Asunto(s)
Metástasis de la Neoplasia , Estrés del Retículo Endoplásmico/fisiología , Matriz Extracelular/fisiología , Humanos , Leucocitos/fisiología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Neoplasia Residual , Células Neoplásicas Circulantes , Recurrencia , Microambiente TumoralRESUMEN
Metastatic latency is a major concern in the clinic, yet how these disseminated cancer cells survive and initiate metastases is unknown (Massagué and Obenauf, Nature 529:298-306, 2016). Here, we describe an approach to isolate latency competent cancer (LCC) cells from early stage human lung and breast carcinoma cell lines using mouse xenograft models (Malladi, Cell 165:45-60, 2016). Cancer cell lines labeled with GFP-luciferase and antibiotic selection markers were injected intracardially into athymic mice. Three months, post-injection, LCC cells were identified in situ and isolated. Upon reinjection, LCC cells retain their tumorigenic potential, enter a slow-cycling or quiescent state, and evade NK cell-mediated innate immune surveillance.
Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Vigilancia Inmunológica/inmunología , Luciferasas/química , Luciferasas/genética , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Metástasis de la Neoplasia/patología , Neoplasias/patología , Transducción Genética/instrumentación , Transducción Genética/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/instrumentaciónRESUMEN
In the version of this Article originally published, the authors inadvertently included the term 'pericytic mimicry' in relation to ref. 54. This has now been corrected by inserting an additional reference at position 51 and amending the text in the Discussion relating to 'pericytic mimicry', ref. 54 and pericyte-like spreading. The original refs 51-70 have also been renumbered. Furthermore, Fig. 8l has been amended to remove the term 'pericyte mimicry' that the authors had included inadvertently during figure preparation. These corrections have been made in the online versions of the Article.
RESUMEN
Metastatic seeding by disseminated cancer cells principally occurs in perivascular niches. Here, we show that mechanotransduction signalling triggered by the pericyte-like spreading of disseminated cancer cells on host tissue capillaries is critical for metastatic colonization. Disseminated cancer cells employ L1CAM (cell adhesion molecule L1) to spread on capillaries and activate the mechanotransduction effectors YAP (Yes-associated protein) and MRTF (myocardin-related transcription factor). This spreading is robust enough to displace resident pericytes, which also use L1CAM for perivascular spreading. L1CAM activates YAP by engaging ß1 integrin and ILK (integrin-linked kinase). L1CAM and YAP signalling enables the outgrowth of metastasis-initiating cells both immediately following their infiltration of target organs and after they exit from a period of latency. Our results identify an important step in the initiation of metastatic colonization, define its molecular constituents and provide an explanation for the widespread association of L1CAM with metastatic relapse in the clinic.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Capilares/metabolismo , Adhesión Celular , Movimiento Celular , Forma de la Célula , Pericitos/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias Encefálicas/genética , Capilares/patología , Comunicación Celular , Proliferación Celular , Femenino , Células HCT116 , Células HEK293 , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Masculino , Mecanotransducción Celular , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Pericitos/patología , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Transactivadores/genética , Factores de Transcripción , Microambiente Tumoral , Proteínas Señalizadoras YAPRESUMEN
According to dogma, initiator caspases are activated through proximity-induced homodimerization, but some studies infer that during apoptosis caspase-9 may instead form a holoenzyme with the Apaf-1 apoptosome. Using several biochemical approaches, including a novel site-specific crosslinking technique, we provide the first direct evidence that procaspase-9 homodimerizes within the apoptosome, markedly increasing its avidity for the complex and inducing selective intramolecular cleavage at Asp-315. Remarkably, however, procaspase-9 could also bind via its small subunit to the NOD domain in Apaf-1, resulting in the formation of a heterodimer that more efficiently activated procaspase-3. Following cleavage, the intersubunit linker (and associated conformational changes) in caspase-9-p35/p12 inhibited its ability to form homo- and heterodimers, but feedback cleavage by caspase-3 at Asp-330 removed the linker entirely and partially restored activity to caspase-9-p35/p10. Thus, the apoptosome mediates the formation of caspase-9 homo- and heterodimers, both of which are impacted by cleavage and contribute to its overall function.
Asunto(s)
Apoptosis , Apoptosomas/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Animales , Dimerización , Ratones , Fosfotransferasas/metabolismo , Proteínas Quinasas/metabolismo , Células Sf9 , Spodoptera , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Metastasis frequently develops years after the removal of a primary tumor, from a minority of disseminated cancer cells that survived as latent entities through unknown mechanisms. We isolated latency competent cancer (LCC) cells from early stage human lung and breast carcinoma cell lines and defined the mechanisms that suppress outgrowth, support long-term survival, and maintain tumor-initiating potential in these cells during the latent metastasis stage. LCC cells show stem-cell-like characteristics and express SOX2 and SOX9 transcription factors, which are essential for their survival in host organs under immune surveillance and for metastatic outgrowth under permissive conditions. Through expression of the WNT inhibitor DKK1, LCC cells self-impose a slow-cycling state with broad downregulation of ULBP ligands for NK cells and evasion of NK-cell-mediated clearance. By expressing a Sox-dependent stem-like state and actively silencing WNT signaling, LCC cells can enter quiescence and evade innate immunity to remain latent for extended periods.
Asunto(s)
Comunicación Autocrina , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Escape del Tumor , Vía de Señalización Wnt , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Vigilancia Inmunológica , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/metabolismoRESUMEN
How organ-specific metastatic traits arise in primary tumors remains unknown. Here, we show a role of the breast tumor stroma in selecting cancer cells that are primed for metastasis in bone. Cancer-associated fibroblasts (CAFs) in triple-negative (TN) breast tumors skew heterogeneous cancer cell populations toward a predominance of clones that thrive on the CAF-derived factors CXCL12 and IGF1. Limiting concentrations of these factors select for cancer cells with high Src activity, a known clinical predictor of bone relapse and an enhancer of PI3K-Akt pathway activation by CXCL12 and IGF1. Carcinoma clones selected in this manner are primed for metastasis in the CXCL12-rich microenvironment of the bone marrow. The evidence suggests that stromal signals resembling those of a distant organ select for cancer cells that are primed for metastasis in that organ, thus illuminating the evolution of metastatic traits in a primary tumor and its distant metastases.
Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Metástasis de la Neoplasia , Transducción de Señal , Animales , Médula Ósea/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Quimiocina CXCL12/metabolismo , Fibroblastos/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Trasplante de Neoplasias , Transcripción Genética , Trasplante Heterólogo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismoRESUMEN
Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b(+)Gr1(+) myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. Although chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α via NF-kB heightens the CXCL1/2 expression in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.
Asunto(s)
Neoplasias de la Mama/patología , Carcinoma/patología , Quimiocina CXCL1/metabolismo , Resistencia a Antineoplásicos , Metástasis de la Neoplasia , Comunicación Paracrina , Animales , Neoplasias de la Mama/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Carcinoma/metabolismo , Quimiocina CXCL1/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/secundario , Ganglios Linfáticos/patología , Metástasis Linfática , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Trasplante de Neoplasias , Trasplante HeterólogoRESUMEN
Electrophile-mediated post-translational modifications (PTMs) are known to cause tissue toxicities and disease progression. These effects are mediated via site-specific modifications and structural disruptions associated with such modifications. 1,4-Benzoquinone (BQ) and its quinone-thioether metabolites are electrophiles that elicit their toxicity via protein arylation and the generation of reactive oxygen species. Site-specific BQ-lysine adducts are found on residues in cytochrome c that are necessary for protein-protein interactions, and these adducts contribute to interferences in its ability to facilitate apoptosome formation. To further characterize the structural and functional impact of these BQ-mediated PTMs, the original mixture of BQ-adducted cytochrome c was fractionated by liquid isoelectric focusing to provide various fractions of BQ-adducted cytochrome c species devoid of the native protein. The fractionation process separates samples based on their isoelectric point (pI), and because BQ adducts form predominantly on lysine residues, increased numbers of BQ adducts on cytochrome c correlate with a lower protein pI. Each fraction was analyzed for structural changes, and each was also assayed for the ability to support apoptosome-mediated activation of caspase-3. Circular dichroism revealed that several of the BQ-adducted cytochrome c species maintained a slightly more rigid structure in comparison to native cytochrome c. BQ-adducted cytochrome c also failed to activate caspase-3, with increasing numbers of BQ-lysine adducts corresponding to a greater inability to activate the apoptosome. In summary, the specific site of the BQ-lysine adducts, and the nature of the adduct, are important determinants of the subsequent structural changes to cytochrome c. In particular, adducts at sites necessary for protein-protein interactions interfere with the proapoptotic function of cytochrome c.
Asunto(s)
Apoptosomas/efectos de los fármacos , Apoptosomas/metabolismo , Benzoquinonas/toxicidad , Citocromos c/química , Aductos de ADN , Lisina/metabolismo , Animales , Benzoquinonas/química , Caspasa 3/metabolismo , Cromatografía Liquida , Dicroismo Circular/métodos , Caballos , Focalización Isoeléctrica/métodos , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Cuaternaria de Proteína , Espectrometría de Masas en TándemRESUMEN
Bcl-2 is an anti-apoptotic member of the Bcl-2 family of proteins that protects cells from apoptosis induced by a large variety of stimuli. The protein BMRP (MRPL41) was identified as a Bcl-2 binding partner and shown to have pro-apoptotic activity. We have performed deletion mutational analyses to identify the domain(s) of Bcl-2 and BMRP that are involved in the Bcl-2/BMRP interaction, and the region(s) of BMRP that mediate its pro-apoptotic activity. The results of these studies indicate that both the BH4 domain of Bcl-2 and its central region encompassing its BH1, BH2, and BH3 domains are required for its interaction with BMRP. The loop region and the transmembrane domain of Bcl-2 were found to be dispensable for this interaction. The Bcl-2 deletion mutants that do not interact with BMRP were previously shown to be functionally inactive. Deletion analyses of the BMRP protein delimited the region of BMRP needed for its interaction with Bcl-2 to the amino-terminal two-thirds of the protein (amino acid residues 1-92). Further deletions at either end of the BMRP(1-92) truncated protein resulted in lack of binding to Bcl-2. Functional studies performed with BMRP deletion mutants suggest that the cell death-inducing domains of the protein reside mainly within its amino-terminal two-thirds. The region of BMRP required for the interaction with Bcl-2 is very relevant for the cell death-inducing activity of the protein, suggesting that one possible mechanism by which BMRP induces cell death is by binding to and blocking the anti-apoptotic activity of Bcl-2.