Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(10): e0271448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36206252

RESUMEN

Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.


Asunto(s)
Pollos , Plumas , Animales , Evolución Biológica , Pollos/genética , Plumas/metabolismo , Fibronectinas/metabolismo , Folículo Piloso , Humanos , Morfogénesis , Moléculas de Adhesión de Célula Nerviosa/metabolismo , ARN Mensajero/genética
2.
PLoS Pathog ; 18(8): e1010745, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36037230

RESUMEN

In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek's disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals' age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host.


Asunto(s)
Herpesviridae , Herpesvirus Gallináceo 2 , Enfermedad de Marek , Animales , Pollos , Hurones , Ratones
3.
J Virol ; 96(5): e0142721, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34936483

RESUMEN

Latency is a hallmark of herpesviruses, allowing them to persist in their host without virion production. Acute exposure to hypoxia (below 3% O2) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gammaherpesviruses (Kaposi's sarcoma-associated virus [KSHV] and Epstein-Barr virus [EBV]). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek's disease virus (MDV), which shares biological properties with EBV and KSHV (notably oncogenic properties), in lymphocytes. Acute exposure to hypoxia (1% O2) of two MDV-latently infected cell lines derived from MD tumors (3867K and MSB-1) induced MDV reactivation. A bioinformatic analysis of the RB-1B MDV genome revealed 214 putative hypoxia response element consensus sequences on 119 open reading frames. Reverse transcriptase quantitative PCR (RT-qPCR) analysis showed five MDV genes strongly upregulated early after hypoxia. In 3867K cells under normoxia, pharmacological agents mimicking hypoxia (MLN4924 and CoCl2) increased MDV reactivation, but to a lower level than real hypoxia. Overexpression of wild-type or stabilized human hypoxia inducible factor 1α (HIF-1α) in MSB-1 cells in normoxia also promoted MDV reactivation. Under such conditions, the lytic cycle was detected in cells with a sustainable HIF-1α expression but also in HIF-1α-negative cells, indicating that MDV reactivation is mediated by HIF-1 in a direct and/or indirect manner. Lastly, we demonstrated by a reporter assay that HIF-1α overexpression induced the transactivation of two viral promoters, shown to be upregulated in hypoxia. These results suggest that hypoxia may play a crucial role in the late lytic replication phase observed in vivo in MDV-infected chickens exhibiting tumors, since a hypoxic microenvironment is a hallmark of most solid tumors. IMPORTANCE Latent-to-lytic switch of herpesviruses (also known as reactivation) is responsible for pathology recurrences and/or viral shedding. Studying physiological triggers of reactivation is therefore important for health to limit lesions and viral transmission. Marek's disease virus (MDV) is a potent oncogenic alphaherpesvirus establishing latency in T lymphocytes and causing lethal T lymphomas in chickens. In vivo, a second lytic phase is observed during the tumoral stage. Hypoxia being a hallmark of tumors, we wondered whether hypoxia induces MDV reactivation in latently infected T lymphocytes, like previously shown for EBV and KSHV in B lymphocytes. In this study, we demonstrated that acute hypoxia (1% O2) triggers MDV reactivation in two MDV transformed T-cell lines. We provide some molecular basis of this reactivation by showing that hypoxia inducible factor 1 (HIF-1) overexpression induces MDV reactivation to an extent similar to that of hypoxia after 24 h. Hypoxia is therefore a reactivation stimulus shared by mammalian and avian oncogenic herpesviruses of different genera.


Asunto(s)
Herpesvirus Gallináceo 2 , Factor 1 Inducible por Hipoxia , Hipoxia , Enfermedad de Marek , Linfocitos T , Activación Viral , Animales , Línea Celular Tumoral , Pollos , Herpesvirus Gallináceo 2/genética , Hipoxia/virología , Factor 1 Inducible por Hipoxia/metabolismo , Linfoma , Enfermedad de Marek/virología , Linfocitos T/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA