Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomolecules ; 14(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334836

RESUMEN

Obesity and sedentarism are associated with increased liver and pancreatic fat content (LFC and PFC, respectively) as well as impaired organ metabolism. Exercise training is known to decrease organ ectopic fat but its effects on organ metabolism are unclear. Genetic background affects susceptibility to obesity and the response to training. We studied the effects of regular exercise training on LFC, PFC, and metabolism in monozygotic twin pairs discordant for BMI. We recruited 12 BMI-discordant monozygotic twin pairs (age 40.4, SD 4.5 years; BMI 32.9, SD 7.6, 8 female pairs). Ten pairs completed six months of training intervention. We measured hepatic insulin-stimulated glucose uptake using [18F]FDG-PET and fat content using magnetic resonance spectroscopy before and after the intervention. At baseline LFC, PFC, gamma-glutamyl transferase (GT), and hepatic glucose uptake were significantly higher in the heavier twins compared to the leaner co-twins (p = 0.018, p = 0.02 and p = 0.01, respectively). Response to training in liver glucose uptake and GT differed between the twins (Time*group p = 0.04 and p = 0.004, respectively). Liver glucose uptake tended to decrease, and GT decreased only in the heavier twins (p = 0.032). In BMI-discordant twins, heavier twins showed higher LFC and PFC, which may underlie the observed increase in liver glucose uptake and GT. These alterations were mitigated by exercise. The small number of participants makes the results preliminary, and future research with a larger pool of participants is warranted.


Asunto(s)
Índice de Masa Corporal , Ejercicio Físico , Glucosa , Metabolismo de los Lípidos , Hígado , Obesidad , Páncreas , Tomografía de Emisión de Positrones , Humanos , Femenino , Hígado/metabolismo , Hígado/diagnóstico por imagen , Adulto , Obesidad/metabolismo , Obesidad/genética , Glucosa/metabolismo , Tomografía de Emisión de Positrones/métodos , Masculino , Páncreas/metabolismo , Páncreas/diagnóstico por imagen , Gemelos Monocigóticos , Persona de Mediana Edad
2.
Nat Cardiovasc Res ; 3: 474-491, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39087029

RESUMEN

Discovery of meningeal lymphatic vessels (LVs) in the dura mater, also known as dural LVs (dLVs) that depend on vascular endothelial growth factor C expression, has raised interest in their possible involvement in Alzheimer's disease (AD). Here we find that in the APdE9 and 5xFAD mouse models of AD, dural amyloid-ß (Aß) is confined to blood vessels and dLV morphology or function is not altered. The induction of sustained dLV atrophy or hyperplasia in the AD mice by blocking or overexpressing vascular endothelial growth factor C, impaired or improved, respectively, macromolecular cerebrospinal fluid (CSF) drainage to cervical lymph nodes. Yet, sustained manipulation of dLVs did not significantly alter the overall brain Aß plaque load. Moreover, dLV atrophy did not alter the behavioral phenotypes of the AD mice, but it improved CSF-to-blood drainage. Our results indicate that sustained dLV manipulation does not affect Aß deposition in the brain and that compensatory mechanisms promote CSF clearance.

3.
Adv Neurobiol ; 37: 545-568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207712

RESUMEN

New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.


Asunto(s)
Diferenciación Celular , Microglía , Microglía/metabolismo , Humanos , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Técnicas de Cultivo de Célula
4.
Redox Biol ; 75: 103272, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39047637

RESUMEN

Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 µm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.


Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Mucosa Olfatoria , Material Particulado , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/inducido químicamente , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Material Particulado/efectos adversos , Material Particulado/toxicidad , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Mucosa Olfatoria/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Masculino , Femenino , Anciano , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/efectos adversos
5.
Nat Commun ; 15(1): 4695, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824138

RESUMEN

Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-ß (Aß) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aß in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aß co-aggregates account for ~50% of the mass of diffusible Aß aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aß tune disease-related functions of Aß aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aß. Selectively removing non-lipidated apoE4-Aß co-aggregates enhances clearance of toxic Aß by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E4 , Apolipoproteínas E , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Animales , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Ratones , Femenino , Agregado de Proteínas , Masculino , Agregación Patológica de Proteínas/metabolismo , Ratones Transgénicos , Neuroglía/metabolismo
6.
J Funct Morphol Kinesiol ; 9(2)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38651416

RESUMEN

Recent studies have shown that obesity and insulin resistance are associated with increased insulin-stimulated glucose uptake (GU) in the brain. Thus, insulin sensitivity seems to work differently in the brain compared to the peripheral tissues like skeletal muscles, but the underlying mechanisms remain unknown. Regular exercise training improves skeletal muscle and whole-body insulin sensitivity. However, the effect of exercise on glucose metabolism in the brain and internal organs is less well understood. The CROSRAT study aims to investigate the effects of exercise training on brain glucose metabolism and inflammation in a high-fat diet-induced rat model of obesity and insulin resistance. Male Sprague Dawley rats (n = 144) are divided into nine study groups that undergo different dietary and/or exercise training interventions lasting 12 to 24 weeks. Insulin-stimulated GU from various tissues and brain inflammation are investigated using [18F]FDG-PET/CT and [11C]PK11195-PET/CT, respectively. In addition, peripheral tissue, brain, and fecal samples are collected to study the underlying mechanisms. The strength of this study design is that it allows examining the effects of both diet and exercise training on obesity-induced insulin resistance and inflammation. As the pathophysiological changes are studied simultaneously in many tissues and organs at several time points, the study provides insight into when and where these pathophysiological changes occur.

7.
PLoS Comput Biol ; 20(4): e1012022, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607982

RESUMEN

The Patient Similarity Network paradigm implies modeling the similarity between patients based on specific data. The similarity can summarize patients' relationships from high-dimensional data, such as biological omics. The end PSN can undergo un/supervised learning tasks while being strongly interpretable, tailored for precision medicine, and ready to be analyzed with graph-theory methods. However, these benefits are not guaranteed and depend on the granularity of the summarized data, the clarity of the similarity measure, the complexity of the network's topology, and the implemented methods for analysis. To date, no patient classifier fully leverages the paradigm's inherent benefits. PSNs remain complex, unexploited, and meaningless. We present StellarPath, a hierarchical-vertical patient classifier that leverages pathway analysis and patient similarity concepts to find meaningful features for both classes and individuals. StellarPath processes omics data, hierarchically integrates them into pathways, and uses a novel similarity to measure how patients' pathway activity is alike. It selects biologically relevant molecules, pathways, and networks, considering molecule stability and topology. A graph convolutional neural network then predicts unknown patients based on known cases. StellarPath excels in classification performances and computational resources across sixteen datasets. It demonstrates proficiency in inferring the class of new patients described in external independent studies, following its initial training and testing phases on a local dataset. It advances the PSN paradigm and provides new markers, insights, and tools for in-depth patient profiling.


Asunto(s)
Biología Computacional , Medicina de Precisión , Humanos , Biología Computacional/métodos , Medicina de Precisión/métodos , Redes Neurales de la Computación , Algoritmos , Genómica/métodos , Biomarcadores/metabolismo , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Multiómica
8.
Cell Rep ; 43(3): 113862, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446664

RESUMEN

Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN no Traducido , ARN Circular , Transducción de Señal , ARN Largo no Codificante/metabolismo , Isquemia
9.
Part Fibre Toxicol ; 21(1): 6, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360668

RESUMEN

BACKGROUND: Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS: Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS: Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Microglía/química , Células Madre Pluripotentes Inducidas/química , Automóviles , Especies Reactivas de Oxígeno , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis
10.
Alzheimers Dement ; 20(2): 954-974, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828821

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disease and the main cause of dementia in the elderly. AD pathology is characterized by accumulation of microglia around the beta-amyloid (Aß) plaques which assumes disease-specific transcriptional signatures, as for the disease-associated microglia (DAM). However, the regulators of microglial phagocytosis are still unknown. METHODS: We isolated Aß-laden microglia from the brain of 5xFAD mice for RNA sequencing to characterize the transcriptional signature in phagocytic microglia and to identify the key non-coding RNAs capable of regulating microglial phagocytosis. Through spatial sequencing, we show the transcriptional changes of microglia in the AD mouse brain in relation to Aß proximity. RESULTS: Finally, we show that phagocytic messenger RNAs are regulated by miR-7a-5p, miR-29a-3p and miR-146a-5p microRNAs and segregate the DAM population into phagocytic and non-phagocytic states. DISCUSSION: Our study pinpoints key regulators of microglial Aß clearing capacity suggesting new targets for future therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Microglía/patología , Enfermedades Neurodegenerativas/patología , Péptidos beta-Amiloides , MicroARNs/genética , Ratones Transgénicos , Modelos Animales de Enfermedad
11.
Diabetes Obes Metab ; 26(1): 251-261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37818602

RESUMEN

AIM: High body weight is a protective factor against osteoporosis, but obesity also suppresses bone metabolism and whole-body insulin sensitivity. However, the impact of body weight and regular training on bone marrow (BM) glucose metabolism is unclear. We studied the effects of regular exercise training on bone and BM metabolism in monozygotic twin pairs discordant for body weight. METHODS: We recruited 12 monozygotic twin pairs (mean ± SD age 40.4 ± 4.5 years; body mass index 32.9 ± 7.6, mean difference between co-twins 7.6 kg/m2 ; eight female pairs). Ten pairs completed the 6-month long training intervention. We measured lumbar vertebral and femoral BM insulin-stimulated glucose uptake (GU) using 18 F-FDG positron emission tomography, lumbar spine bone mineral density and bone turnover markers. RESULTS: At baseline, heavier co-twins had higher lumbar vertebral BM GU (p < .001) and lower bone turnover markers (all p < .01) compared with leaner co-twins but there was no significant difference in femoral BM GU, or bone mineral density. Training improved whole-body insulin sensitivity, aerobic capacity (both p < .05) and femoral BM GU (p = .008). The training response in lumbar vertebral BM GU was different between the groups (time × group, p = .02), as GU tended to decrease in heavier co-twins (p = .06) while there was no change in leaner co-twins. CONCLUSIONS: In this study, regular exercise training increases femoral BM GU regardless of weight and genetics. Interestingly, lumbar vertebral BM GU is higher in participants with higher body weight, and training counteracts this effect in heavier co-twins even without reduction in weight. These data suggest that BM metabolism is altered by physical activity.


Asunto(s)
Médula Ósea , Resistencia a la Insulina , Humanos , Femenino , Adulto , Obesidad , Ejercicio Físico , Sobrepeso , Densidad Ósea
12.
Sci Rep ; 13(1): 22118, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092815

RESUMEN

LRRK2-G2019S is one of the most common Parkinson's disease (PD)-associated mutations and has been shown to alter microglial functionality. However, the impact of LRRK2-G2019S on transcriptional profile of human induced pluripotent stem cell-derived microglia-like cells (iMGLs) and how it corresponds to microglia in idiopathic PD brain is not known. Here we demonstrate that LRRK2-G2019S carrying iMGL recapitulate aspects of the transcriptional signature of human idiopathic PD midbrain microglia. LRRK2-G2019S induced subtle and donor-dependent alterations in iMGL mitochondrial respiration, phagocytosis and cytokine secretion. Investigation of microglial transcriptional state in the midbrains of PD patients revealed a subset of microglia with a transcriptional overlap between the in vitro PD-iMGL and human midbrain PD microglia. We conclude that LRRK2-G2019S iMGL serve as a model to study PD-related effects in human microglia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Microglía , Enfermedad de Parkinson/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Expresión Génica
13.
Environ Toxicol Pharmacol ; 104: 104316, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37981204

RESUMEN

This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ratones , Animales , Femenino , Bulbo Olfatorio/química , Bulbo Olfatorio/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Transcriptoma , Ratones Endogámicos C57BL , Contaminación del Aire/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Perfilación de la Expresión Génica , Biomarcadores/metabolismo , ARN Mensajero/metabolismo , Tamaño de la Partícula
14.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774681

RESUMEN

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Lóbulo Frontal , Microglía , Neuronas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Neuronas/patología , Células Piramidales , Biopsia , Lóbulo Frontal/patología , Análisis de Expresión Génica de una Sola Célula , Núcleo Celular/metabolismo , Núcleo Celular/patología
15.
Sci Total Environ ; 905: 167038, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709087

RESUMEN

Ultrafine particles (UFP) with a diameter of ≤0.1 µm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 µm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.


Asunto(s)
Contaminantes Atmosféricos , Xenobióticos , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Mucosa Olfatoria/química
16.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333365

RESUMEN

Cellular perturbations underlying Alzheimer's disease are primarily studied in human postmortem samples and model organisms. Here we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of Alzheimer's disease pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the Early Cortical Amyloid Response-were prominent in neurons, wherein we identified a transient state of hyperactivity preceding loss of excitatory neurons, which correlated with the selective loss of layer 1 inhibitory neurons. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathological burden increased. Lastly, both oligodendrocytes and pyramidal neurons upregulated genes associated with amyloid beta production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.

17.
EMBO Rep ; 24(7): e56467, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155564

RESUMEN

The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aß1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aß1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aß1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aß1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aß plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Factor H de Complemento/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedades Neuroinflamatorias , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Péptidos beta-Amiloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
18.
Genes (Basel) ; 14(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36833188

RESUMEN

Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs.


Asunto(s)
Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/metabolismo , ARN Interferente Pequeño/metabolismo , Comunicación Celular , Proteínas/metabolismo
19.
J Extracell Vesicles ; 12(1): e12297, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594832

RESUMEN

Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Biomarcadores/metabolismo
20.
Neuroprotection ; 1(2): 84-98, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223913

RESUMEN

The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-ß (Aß) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aß antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aß and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aß from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA