Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39448316

RESUMEN

BACKGROUND AND AIMS: Hypertension depends on renin-angiotensin system dysfunction; however, little is known about its implications in the outcomes of neurogenic hypertension induced by peri-pubertal insults. This study aimed to evaluate whether hypertension induced by a peri-pubertal low-protein diet is related to renin-angiotensin system dysfunction in adult male Wistar rats. METHODS AND RESULTS: Thirty-day-old male Wistar rats were fed a low-protein diet (4 % casein) for 30 days and subsequently fed a 20.5 % normal protein diet for a 60-day dietary recovery (LP group). Control animals (NP group) were fed a 20.5 % protein diet throughout their lives. Cardiovascular and renin-angiotensin system functions were evaluated on postnatal day 120 (6-24 animals per group). Statistical analyses were performed using the Student's t-test. Animals with LP show increased arterial blood pressure. The angiotensin 2 dose-response curve of LP animals showed an increase in the pressor response at a lower dose (50 ng/kg) and a reduction in the pressor response at a higher dose (400 ng/kg) compared with NP animals. Angiotensin 2 type 1 receptor mRNA levels were increased in the hearts of LP animals; however, angiotensin 2 type 2 receptor and MAS receptor mRNA levels were reduced. In the aorta, AT1 and AT2 mRNA levels were increased in LP animals, whereas MAS receptor mRNA levels were decreased in comparison to NP animals. CONCLUSION: The renin-angiotensin system is disrupted in hypertension induced by protein restriction exposure during peri-pubertal life.

2.
An Acad Bras Cienc ; 96(suppl 1): e20231049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258692

RESUMEN

Nutritional insults early in life, such as during the suckling phase, are associated with phenotypic alterations and promote adverse permanent effects that impair the capacity to maintain energy balance in adulthood. This study aimed to evaluate the long-term effects of a low-protein (LP) diet during lactation on the metabolism and antioxidant systems of adult female rat offspring. Dams were fed a low-protein diet (4% protein) during the first two weeks of lactation or a normal-protein (NP) diet (20% protein) during the entire lactation period. The female offspring received a standard diet throughout the experiment. At 90 days of age, female LP offspring exhibited decreased body weight, feeding efficiency, and fat pad stores. The adult LP female offspring displayed brown adipose tissue hyperplasia without alterations in glucose homeostasis. The LP diet decreased liver triglyceride content and improved the antioxidant system compared to the NP group. The LP diet during the suckling phase promotes a lean phenotype and improves the hepatocyte antioxidant system in adult female offspring. Thus, the LP diet may play an important role in homeostasis and the prevention of metabolic damage.


Asunto(s)
Antioxidantes , Restricción Calórica , Dieta con Restricción de Proteínas , Lactancia , Fenotipo , Ratas Wistar , Animales , Femenino , Lactancia/fisiología , Ratas , Antioxidantes/metabolismo , Peso Corporal/fisiología
3.
Nutrition ; 108: 111945, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696704

RESUMEN

OBJECTIVES: Maternal protein-caloric restriction during lactation can malprogram offspring into having a lean phenotype associated with metabolic dysfunction in early life and adulthood. The aim of this study was to investigate the relationships between nutritional stress, maternal behavior and metabolism, milk composition, and offspring parameters. Additionally, we focused on the role of hypothalamus-pituitary-adrenal axis hyperactivation during lactation. METHODS: Dams were fed a low-protein diet (4% protein) during the first 2 wk of lactation or a normal-protein diet (20% protein) during all lactation. Analyses of dams, milk, and offspring were conducted on postnatal days (PD) 7, 14, and 21. RESULTS: Body weight and food intake decreased in dams, which was associated with reduced fat pad stores and increased corticosterone levels at PD 14. The stressed low-protein diet dams demonstrated alterations in behavior and offspring care. Despite nutritional deprivation, dams adapted their metabolism to provide adequate energy supply through milk; however, we demonstrated elevated corticosterone and total fat levels in milk at PD 14. Male offspring also showed increased corticosterone at PD 7, associated with a lean phenotype and alterations in white and brown adipose tissue morphology at PD 21. CONCLUSION: Exposure to protein-caloric restriction diet of dams during lactation increased the glucocorticoid levels in dams, milk, and offspring, which is associated with alterations in maternal behavior and milk composition. Thus, glucocorticoids and milk composition may play an important role in metabolic programming induced by maternal undernutrition.


Asunto(s)
Leche , Obesidad , Femenino , Ratas , Animales , Masculino , Humanos , Obesidad/metabolismo , Restricción Calórica , Sistema Hipotálamo-Hipofisario , Corticosterona , Sistema Hipófiso-Suprarrenal , Lactancia/fisiología , Proteínas/metabolismo , Tejido Adiposo Pardo/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos
4.
Arch Med Res ; 53(5): 492-500, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35840468

RESUMEN

BACKGROUND: The intestinal microbiota is involved in many physiological processes. However, the effects of microbiota in metabolic programming still unknow. We evaluated whether the transplantation of fecal microbiota during early life can program health or disease during adulthood in a model of lean and obese male and female Wistar rats. METHODS: Parental obesity were induced using a small litter (SL, 3 pups/dam) model. At 90 d old, normal litter (NL, 9 pups/dam) and SL males and females (parents) from different litters were mated: NL male vs. NL female; SL male vs. SL female. After birth, male and female offspring rats were also standardized in normal litters or small litters . From the 10th until 25th d of life, the NL and SL male and female offspring received via gavage of a solution containing the diluted feces of the opposite dam (fecal microbiota, M) or saline solution (S). At 90 d of age, biometric and biochemical parameters were assessed. RESULTS: NLM male rats transplanted with obese microbiota showed increased body weight, and fat pad deposition, hyperinsulinemia, glucose intolerance and dyslipidemia. SLM male rats transplanted with lean microbiota had decreased retroperitoneal and mesenteric fat, triglycerides and VLDL levels and improvement of glucose tolerance. Despite SLM female rats showed higher visceral fat, microbiota transplantation in female rats caused no changes in these parameters compared with control groups. CONCLUSION: Fecal microbiota transplantation during lactation induces long-term effects on the metabolism of male Wistar rats. However, female rats were resistant to metabolic alterations caused by the treatment.


Asunto(s)
Trasplante de Microbiota Fecal , Lactancia , Tejido Adiposo/metabolismo , Animales , Animales Recién Nacidos , Peso Corporal , Femenino , Masculino , Obesidad/metabolismo , Obesidad/terapia , Ratas , Ratas Wistar
5.
Front Nutr ; 9: 1062116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704794

RESUMEN

Introduction: Protein restriction during lactation can induce metabolic dysfunctions and has a huge impact on the offspring's phenotype later in its life. We tested whether the effects of a maternal low-protein diet (LP) in rats can be transmitted to the F2 generation and increase their vulnerability to dietary insults in adulthood. Methods: Female Wistar rats (F0) were fed either a low-protein diet (LP; 4% protein) during the first 2 weeks of lactation or a normal-protein diet (NP; 23% protein). The female offspring (F1 generation) were maintained on a standard diet throughout the experiment. Once adulthood was reached, female F1 offspring from both groups (i.e., NP-F1 and LP-F1) were bred to proven males, outside the experiment, to produce the F2 generation. Male F2 offspring from both groups (NP-F2 and LP-F2 groups) received a standard diet until 60 days old, at which point they received either a normal fat (NF; 4.5% fat) or a high fat diet (HF; 35% fat) for 30 days. Results: At 90 days old, LPNF-F2 offspring had increased lipogenesis and fasting insulinemia compared to NPNF-F2, without alteration in insulin sensitivity. HF diet caused increased gluconeogenesis and displayed glucose intolerance in LPHF-F2 offspring compared to LPNF-F2 offspring. Additionally, the HF diet led to damage to lipid metabolism (such as steatosis grade 3), higher body weight, fat pad stores, and hepatic lipid content. Discussion: We concluded that an F0 maternal protein restricted diet during lactation can induce a transgenerational effect on glucose and liver metabolism in the F2 generation, making the offspring's liver more vulnerable to nutritional injury later in life.

6.
J Dev Orig Health Dis ; 13(3): 406-410, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34284843

RESUMEN

Exercise counteracts obesity effects, but information on how early-life obesity may affect long-term adaptation to exercise is lacking. This study investigates the impact of early-life postnatal overfeeding (PO) on animals' adaptation to exercise. Only male Wistar rats were used. On postnatal day (PN) 30, rats from control (NL-9 pups) or PO (SL-3 pups) litters were separated into four groups: NL-sedentary (NL-Se), NL-exercised (NL-Ex), SL-sedentary (SL-Se), and SL-exercised (SL-Ex). Exercised groups performed moderate-intensity exercise, running on a treadmill, from PN30 to PN90. Further experiments were carried out between PN90 and PN92. PO promoted obesity in SL versus NL rats (P < 0.05). Exercise reduced body weight (P < 0.001), body fat (P < 0.01), and improved glucose homeostasis in SL-Ex versus SL-Se. SL-Ex presented lower VO2max (P < 0.01) and higher post-exercise LDH (P < 0.05) compared to NL-Ex rats. Although moderate exercise counteracted obesity in SL rats, early-life overnutrition restricts fitness gains in adulthood, indicating that early obesity may impair animals' adaptation to exercise.


Asunto(s)
Hipernutrición , Animales , Animales Recién Nacidos , Peso Corporal , Masculino , Músculos , Obesidad/etiología , Hipernutrición/complicaciones , Ratas , Ratas Wistar
7.
Toxicol Appl Pharmacol ; 429: 115712, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34481828

RESUMEN

Metformin (Met) is widely used to control blood glucose levels and acts on various organs, including reproductive tissues, to improve reproductive and lifespan. This study evaluated whether neonatal Met exposure prevented male reproductive dysfunction caused by being overweight during adulthood. Randomized Wistar rat pups received an intraperitoneal injection from postnatal days (PNDs) 1 to 12of saline (Sal; 0.9% NaCl/day in 2mL/kg) or Met (100 mg/kg/day in 2 mL/kg). From PNDs 60 to 90, the animals received a regular (R; 4.5% fat; Sal R and Met R groups) or a high-fat (HF; 35% fat; Sal HF and Met HF groups) diet. At PND 90, all animals were euthanized to evaluate their biometric and reproductive parameters. The Sal and Met groups with R showed similar body weights, however, the HF diet increased the body weight in both groups. The Sal HF group showed testicular damage regarding in antioxidant status and inflammatory profile in the epididymal cauda. The HF diet reduced Leydig and Sertoli cells numbers, with lower sperm quality. The Met R animals showed positive reproductive programming, due to improved antioxidant defense, inflammatory biomarkers, and sperm morphology. Met HF prevented HF diet damage to reproductive organs and sperm morphology, but not to sperm motility. Early Met exposure positively affected the male reproductive system of adult rats, preventing reproductive HF disorders. STATEMENT OF NOVELTY AND SIGNIFICANCE: Metformin is used to control type 2 diabetes mellitus and can act to improve metabolism and lifespan. Metformin avoidance is recommended during pregnancy, but there is no information regarding its use when breastfeeding. For the first time, we showed in this current study that metformin positively acts in the male reproductive tissues and helps involved in later life. These data showed a better antioxidant defense and anti-inflammatory profile of Metformin animals than Saline animals and might directly improve reproductive organs morphophysiology and sperm morphology. Also, the neonatal Met application programs the male reproduction to counterbalance damages from an obesogenic environment in later life.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Metformina/administración & dosificación , Reproducción/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Animales Recién Nacidos , Esquema de Medicación , Mediadores de Inflamación/metabolismo , Lactancia , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Testículo/metabolismo , Testículo/patología , Testículo/fisiopatología , Testosterona/sangre
8.
J Endocrinol ; 250(3): 81-91, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34101615

RESUMEN

We tested whether chronic supplementation with soy isoflavones could modulate insulin secretion levels and subsequent recovery of pancreatic islet function as well as prevent metabolic dysfunction induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SL, three pups/dam) and normal litters (NL, nine pups/dam) were used as models of early overfeeding and normal feeding, respectively. At 30 to 90 days old, animals in the SL and NL groups received either soy isoflavones extract (ISO) or water (W) gavage serving as controls. At 90 days old, body weight, visceral fat deposits, glycemia, insulinemia were evaluated. Glucose-insulin homeostasis and pancreatic-islet insulinotropic response were also determined. The early life overnutrition induced by small litter displayed metabolic dysfunction, glucose, and insulin homeostasis disruption in adult rats. However, adult SL rats treated with soy isoflavones showed improvement in glucose tolerance, insulin sensitivity, insulinemia, fat tissue accretion, and body weight gain, compared with the SL-W group. Pancreatic-islet response to cholinergic, adrenergic, and glucose stimuli was improved in both isoflavone-treated groups. In addition, different isoflavone concentrations increased glucose-stimulated insulin secretion in islets of all groups with higher magnitude in both NL and SL isoflavone-treated groups. These results indicate that long-term treatment with soy isoflavones inhibits early overfeeding-induced metabolic dysfunction in adult rats and modulated the process of insulin secretion in pancreatic islets.


Asunto(s)
Islotes Pancreáticos/efectos de los fármacos , Isoflavonas/farmacología , Enfermedades Metabólicas/prevención & control , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/fisiología , Isoflavonas/aislamiento & purificación , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/patología , Hipernutrición/complicaciones , Hipernutrición/metabolismo , Hipernutrición/patología , Embarazo , Ratas , Ratas Wistar , Factores Sexuales , Glycine max/química
9.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149616

RESUMEN

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Asunto(s)
Sistema Nervioso Autónomo/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Obesidad/tratamiento farmacológico , Acetilcolina/farmacología , Animales , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Neostigmina/farmacología , Obesidad/inducido químicamente , Obesidad/metabolismo , Obesidad/fisiopatología , Ratas Wistar , Receptor Muscarínico M3/metabolismo , Glutamato de Sodio , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
10.
Pancreas ; 50(4): 607-616, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33939676

RESUMEN

OBJECTIVES: This study aimed to evaluate the effect of vagotomy, when associated with splenectomy, on adiposity and glucose homeostasis in Wistar rats. METHODS: Rats were divided into 4 groups: vagotomized (VAG), splenectomized (SPL), VAG + SPL, and SHAM. Glucose tolerance tests were performed, and physical and biochemical parameters evaluated. Glucose-induced insulin secretion and protein expression (Glut2/glucokinase) were measured in isolated pancreatic islets. Pancreases were submitted to histological and immunohistochemical analyses, and vagus nerve neural activity was recorded. RESULTS: The vagotomized group presented with reduced body weight, growth, and adiposity; high food intake; reduced plasma glucose and triglyceride levels; and insulin resistance. The association of SPL with the VAG surgery attenuated, or abolished, the effects of VAG and reduced glucose-induced insulin secretion and interleukin-1ß area in ß cells, in addition to lowering vagal activity. CONCLUSIONS: The absence of the spleen attenuated or blocked the effects of VAG on adiposity, triglycerides and glucose homeostasis, suggesting a synergistic effect of both on metabolism. The vagus nerve and spleen modulate the presence of interleukin-1ß in ß cells, possibly because of the reduction of glucose-induced insulin secretion, indicating a bidirectional flow between autonomous neural firing and the spleen, with repercussions for the endocrine pancreas.


Asunto(s)
Secreción de Insulina/fisiología , Interleucina-1beta/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Esplenectomía/métodos , Vagotomía/métodos , Adiposidad/fisiología , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Insulina/sangre , Resistencia a la Insulina/fisiología , Masculino , Ratas Wistar
11.
Exp Physiol ; 105(12): 2051-2060, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33074581

RESUMEN

NEW FINDINGS: What is the central question of this study? Studies reported the efficacy of metformin as a promising drug for preventing or treating of metabolic diseases. Nutrient stresses during neonatal life increase long-term risk for cardiometabolic diseases. Can early metformin treatment prevent the malprogramming effects of early overfeeding? What is the main finding and its importance? Neonatal metformin treatment prevented early overfeeding-induced metabolic dysfunction in adult rats. Inhibition of early hyperinsulinaemia and adult hyperphagia might be associated with decreased metabolic disease risk in these animals. Therefore, interventions during infant development offer a key area for future research to identify potential strategies to prevent the long-term metabolic diseases. We suggest that metformin is a potential tool for intervention. ABSTRACT: Given the need for studies investigating the possible long-term effects of metformin use at crucial stages of development, and taking into account the concept of metabolic programming, the present work aimed to evaluate whether early metformin treatment might program rats to resist the development of adult metabolic dysfunctions caused by overnutrition during the neonatal suckling phase. Wistar rats raised in small litters (SLs, three pups per dam) and normal litters (NLs, nine pups per dam) were used as models of early overfeeding and normal feeding, respectively. During the first 12 days of suckling, animals from SL and NL groups received metformin, whereas the controls received saline injections. Food intake and body weight were monitored from weaning until 90 days of age, when biometric and biochemical parameters were assessed. The metformin treatment decreased insulin concentrations in pups from SL groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, body weight gain, white fat pad stores and food intake. Low-glucose insulinotrophic effects were observed in pancreatic islets from both NL and SL groups. These results indicate that early postnatal treatment with metformin inhibits early overfeeding-induced metabolic dysfunctions in adult rats.


Asunto(s)
Islotes Pancreáticos/efectos de los fármacos , Enfermedades Metabólicas/prevención & control , Metformina/farmacología , Hipernutrición/tratamiento farmacológico , Tejido Adiposo Blanco/metabolismo , Animales , Animales Recién Nacidos , Glucemia/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Femenino , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Islotes Pancreáticos/metabolismo , Leptina/metabolismo , Masculino , Enfermedades Metabólicas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hipernutrición/metabolismo , Ratas , Ratas Wistar , Aumento de Peso/efectos de los fármacos
12.
Nutr Neurosci ; 23(6): 432-443, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30187832

RESUMEN

Objectives: We aimed to assess the effects of a maternal protein-caloric restriction diet during late pregnancy on the metabolism of rat offspring fed a high-fat diet (HFD) during adulthood.Methods: During late pregnancy, rat dams received either a low-protein (4%; LP group) or normoprotein (23%; NP group) diet. After weaning, the offspring were fed a standard diet (Control; C). Male offspring (60 days old) from both groups were then fed either the C diet or HFD until they were 90 days old. The adult offspring and maternal metabolic parameters and autonomic nervous system (ANS) were then evaluated.Results: Dams exhibited low body weight gain and food intake during the LP diet consumption. At lactation, these dams showed high body weight gain, hypoinsulinemia and hyperglycemia. The maternal LP diet resulted in low body weights for the pups. There were also no differences in the metabolic parameters between the adult LP offspring that were fed the C diet and the NP group. Adults of both groups that were fed the HFD developed obesity associated with altered insulin/ glucose homeostasis and altered ANS activity; however, the magnitudes of these parameters were higher in the LP group than in the NP group.Conclusions: Maternal protein malnutrition during the last third of pregnancy malprograms the metabolism of rat offspring, resulting in increased vulnerability to HFD-induced obesity, and the correlated metabolic impairment might be associated with lower sympathetic nerve activity in adulthood.


Asunto(s)
Desnutrición/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Complicaciones del Embarazo/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas Wistar
13.
Nutr Metab (Lond) ; 16: 65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31528184

RESUMEN

BACKGROUND: A combination of resistance training and whey protein supplementation is a common practice among athletes and recreational exercisers to enhance muscle growth and strength. Although their safety as food additives is controversial, artificial sweeteners are present in whey protein supplements. Thus, natural sweeteners extracted from the leaves of Stevia rebaudiana are a potential alternative, due to their safety and health benefits. Here, we investigated the effects of whey protein sweetened with S. rebaudiana on physical performance and mitochondrial biogenesis markers in the skeletal muscle of resistance-trained rats. METHODS: Forty male Wistar rats were distributed into four groups: sedentary rats, trained rats, trained rats receiving whey protein and trained rats receiving whey protein sweetened with S. rebaudiana leaf extracts. Resistance training was performed by climbing a ladder 5 days per week, during 8-weeks. The training sessions consisted of four climbs carrying a load of 50, 75, 90, and 100% of the maximum load-carrying capacity which we determined before by performing a maximum load-carrying test for each animal. After this period, we collected plasma and tissues samples to evaluate biochemical, histological and molecular (western blot) parameters in these rats. RESULTS: Dietary supplementation with whey protein sweetened with S. rebaudiana significantly enhanced the maximum load-carrying capacity of resistance-trained rats, compared with non-sweetened whey protein supplementation. This enhanced physical performance was accompanied by an increase in the weight of the gastrocnemius and soleus muscle pads. Although the muscle pad of the biceps brachii was not altered, we observed a significant increase in PGC-1α expression, which was followed by a similar pattern in TFAM protein expression, two important mitochondrial biogenesis markers. In addition, a higher level of AMPK phosphorylation was observed in these resistance-trained rats. Finally, supplementation with whey protein sweetened with S. rebaudiana also induced a significant decrease in retroperitoneal adipocyte diameter and an increase in the weight of brown adipose tissue pads in resistance-trained rats. CONCLUSION: The addition of Stevia rebaudiana leaf extracts to whey protein appears to be a potential strategy for those who want to increase muscular mass and strength and also improve mitochondrial function. This strategy may be useful for both athletes and patients with metabolic disorders, such as obesity and type 2 diabetes.

14.
Toxicology ; 425: 152250, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31326399

RESUMEN

Evidence suggests that low concentration perinatal exposure to environmental contaminants, such as organophosphate (OP) is associated with later life insulin resistance and type 2 diabetes. The aim of this work was to investigate whether chronic maternal OP exposure exacerbates metabolic dysfunctions in early-overfed rats. During pregnancy and lactational periods, dams received OP by gavage. To induce neonatal overnutrition at postnatal day 3, pups were standardized to 9 or 3 per nest. At 90-days-old, glucose-insulin homeostasis and insulin release from pancreatic islets were analyzed. While both OP exposure and overfeeding alone did induce diabetogenic phenotypes in adulthood, there was no exacerbation in rats that experienced both. Unexpectedly, the group that experienced both had improved adiposity, metabolic parameters, attenuated insulin release from isolated islets in the presence of glucose and low function of muscarinic acetylcholine receptor M3, as well as an attenuation of beta cell mass hyperplasia. High levels of butyrylcholinesterase and low levels of insulin in milk may contribute to the OP-induced developmental programming. Our study showed that maternal OP exposure may program insulin release as well as endocrine pancreas structure, thus affecting metabolism in adulthood. Our data suggest that while perinatal OP exposure alone increases the risk for later life T2D, it actually reverses many of the programmed metabolic dysfunction that is induced by postnatal overfeeding. These surprising results may suggest that low-dose administration of acetylcholinesterase inhibitors could be of utility in preventing detrimental developmental programming that is caused by early-life overnutrition.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Exposición Materna , Enfermedades Metabólicas/tratamiento farmacológico , Organofosfatos/farmacología , Hipernutrición/tratamiento farmacológico , Animales , Animales Recién Nacidos , Glucemia/análisis , Composición Corporal/efectos de los fármacos , Inhibidores de la Colinesterasa/administración & dosificación , Ingestión de Energía/efectos de los fármacos , Femenino , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Enfermedades Metabólicas/etiología , Organofosfatos/administración & dosificación , Hipernutrición/complicaciones , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Wistar
15.
J Physiol ; 597(15): 3905-3925, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31210356

RESUMEN

KEY POINTS: Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT: We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V̇O2max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V̇O2max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.


Asunto(s)
Carcinoma 256 de Walker/terapia , Condicionamiento Físico Animal/métodos , Animales , Caquexia/metabolismo , Caquexia/prevención & control , Carcinoma 256 de Walker/patología , Carcinoma 256 de Walker/prevención & control , Células Cultivadas , Glucosa/metabolismo , Resistencia a la Insulina , Masculino , Ratas , Ratas Wistar
16.
Front Physiol ; 10: 170, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930783

RESUMEN

We aimed to test whether moderate physical training can induce long-lasting protection against cardiovascular risk factors induced by high fat diet (HFD) intake, even after cessation of training. 90-days-old Wistar rats were submitted to a sedentary lifestyle or moderate physical training, three times a week, for 30 days. Following this, at 120 days-of age, sedentary and trained rats received a hypercaloric diet (HFD) or a commercial diet normal fat diet (NFD) for 30 days. Body weight (BW) and food intake were evaluated weekly. At 150 days-of age, hemodynamic measures (systolic, diastolic, mean blood pressure, pulse pressure, pulse interval and heart rate) were made via an indwelling femoral artery catheter. Beat-to-beat data were analyzed to calculate power spectra of systolic blood pressure (SBP) and pulse interval. After euthanasia, mesenteric fat pads were removed and weighted and total blood was stored for later analysis of lipid profile. Consumption of a HFD increased blood pressure (BP), pulse pressure, low frequency BP variability, BW gain, fat pad stores and induced dyslipidemia. Interestingly, prior physical training was able to partially protect against this rise in BP and body fat stores. Prior physical training did not totally protect against the effects of HFD consumption but previously trained animals did demonstrate resistance to the development of cardiometabolic alterations, which illustrate that the benefits of physical training may be partially maintained even after 30 days of detraining period.

17.
J Neuroendocrinol ; 31(6): e12717, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30929305

RESUMEN

The hypothalamic-pituitary-adrenal axis (HPA) exerts important catabolic peripheral effects and influences autonomic nervous system (ANS)-mediated processes. Impaired negative-feedback control or reduced HPA axis sensitivity and altered ANS activity appear to be associated with the development and maintenance of obesity. In the present study, we examined the hypothesis that the central HPA axis is dysregulated favouring ANS disbalance in monosodium l-glutamate (MSG)-induced rat obesity. Glucose homeostasis, corticosterone, leptin and ANS electrical activity were evaluated. Adult MSG-induced obese rats exhibited fasting hyperinsulinaemia, insulin resistance, glucose intolerance, hypercorticosteronaemia, hyperleptinaemia and altered ANS activity. A decrease in food intake was observed during corticotrophin-releasing hormone (CRH) treatment in both control and MSG-treated rats. By contrast, food intake was significantly elevated in control rats treated with dexamethasone (DEXA), whereas no alterations were observed following DEXA treatment in MSG-induced obese rats. After DEXA injection, an increase in fasting insulin and glucose levels, associated with insulin resistance, was seen in both groups. As expected, there was a decrease of parasympathetic activity and an increase of sympathetic nervous activity in CRH-treated control animals and the opposite effect was seen after DEXA treatment. By contrast, there was no effect on ANS activity in MSG-rats treated with CRH or DEXA. In conclusion, impairment of the HPA axis can lead to disbalance of ANS activity in MSG-treated rats, contributing to the establishment and maintenance of obesity.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Obesidad/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiopatología , Corticosterona/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Glucosa/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiopatología , Insulina/metabolismo , Masculino , Obesidad/inducido químicamente , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas Wistar , Glutamato de Sodio/administración & dosificación , Glutamato de Sodio/análogos & derivados
18.
Endocrine ; 63(1): 62-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30128960

RESUMEN

PURPOSE: The early-life nutritional environment affects long-term glucose homeostasis, we investigated the effects of maternal low-protein diet combined with postnatal early overfeeding on the male offspring's glucose homeostasis in adulthood. METHODS: Only male rats were used, and their delivery was considered postnatal-day 0 (PN0). Wistar rats' dams were divided into control (NP) or low-protein diet (LP). LP dams remained on the diet until PN14, after which all animals were supplied with the control diet. At PN2, litters were adjusted to 9 (control-NL) or 3 (postnatal-overfeeding-PO) pups, resulting in four experimental groups: NP-NL, NP-PO, LP-NL, and LP-PO. Litters were weaned on PN21. At PN80, a batch of animals from all experimental groups underwent surgery for cannula implantation, followed by intravenous glucose tolerance test (ivGTT), but the insulinogenic index (ISI) was calculated. At PN81, animals were euthanized and tissues were collected. RESULTS: LP-diet and early postnatal-overfeeding were effective in promoting the expected biometric outcomes at PN21 and PN81, but the LP-PO animals present a biometric profile similar to the control (NP-NL) group. Postnatal-overfeeding increased fasting glycemia in LP-PO animals (p < 0.01). In the ivGTT, postnatal-overfeeding elevated the glycemia (p < 0.0001), exacerbated in LP-PO animals (p < 0.0001). Insulinemia was reduced by both, maternal LP-diet and postnatal-overfeeding, with a higher degree of reduction in LP-PO animals (p < 0.0001). Maternal LP-diet and postnatal-overfeeding reduced the ISI (p < 0.0001). Factors interaction lead the LP-PO to a lower ISI compared to all other groups (p < 0.0001). CONCLUSIONS: The combination of low-protein diet in breastfeeding dams with postnatal overfeeding disturbed the offspring's glucose metabolism in adulthood.


Asunto(s)
Glucemia/metabolismo , Dieta con Restricción de Proteínas/efectos adversos , Hiperfagia/complicaciones , Lactancia , Animales , Animales Recién Nacidos , Ingestión de Alimentos , Femenino , Prueba de Tolerancia a la Glucosa , Homeostasis , Insulina/sangre , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratas , Ratas Wistar
19.
Front Physiol ; 9: 465, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867528

RESUMEN

Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

20.
Int J Endocrinol ; 2018: 3189879, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29853880

RESUMEN

Stevia rebaudiana (Bert.) Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF), has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS) only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA