Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Basic Res Cardiol ; 114(2): 12, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30767143

RESUMEN

Cardiomyocyte loss and cardiac fibrosis are the main characteristics of cardiac ischemia and heart failure, and mitochondrial function of cardiomyocytes is impaired in cardiac ischemia and heart failure, so the aim of this study is to identify fate variability of cardiomyocytes and cardiac fibroblasts with mitochondria inhibition and explore the underlying mechanism. The mitochondrial respiratory function was measured by using Oxygraph-2k high-resolution respirometry. The STAT3 expression and activity were evaluated by western blot. Cardiomyocytes and cardiac fibroblasts displayed different morphology. The mitochondrial respiratory function and the expressions of mitochondrial complex I, II, III, IV, and V of cardiac fibroblasts were lower than that of cardiomyocytes. Mitochondrial respiratory complex I inhibitor rotenone and H2O2 (100 µM, 4 h) treatment induced cell death of cardiomyocyte but not cardiac fibroblasts. The function of complex I/II was impaired in cardiomycytes but not cardiac fibroblasts stimulated with H2O2 (100 µM, 4 h) and in ischemic heart of mice. Rotenone and H2O2 (100 µM, 4 h) treatment reduced STAT3 expression and activity in cardiomyocytes but not cardiac fibroblasts. Inhibition of STAT3 impaired mitochondrial respiratory capacity and exacerbated H2O2-induced cell injury in cardiomycytes but not significantly in cardiac fibroblasts. In conclusion, the different susceptibility of cardiomyocytes and cardiac fibroblasts to mitochondria inhibition determines the cell fate under the same pathological stimuli and in which STAT3 plays a critical role.


Asunto(s)
Fibroblastos/metabolismo , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Ratones , Isquemia Miocárdica/fisiopatología , Ratas , Ratas Sprague-Dawley
2.
Acta Pharm Sin B ; 8(6): 909-918, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30505660

RESUMEN

Our previous studies found that mitochondrial uncouplers CCCP and niclosamide inhibited artery constriction and the mechanism involved AMPK activation in vascular smooth muscle cells. BAM15 is a novel type of mitochondrial uncoupler. The aim of the present study is to identify the vasoactivity of BAM15 and characterize the BAM15-induced AMPK activation in vascular smooth muscle cells (A10 cells). BAM15 relaxed phenylephrine (PE)-induced constricted rat mesenteric arteries with intact and denuded endothelium. Pretreatment with BAM15 inhibited PE-induced constriction of rat mesenteric arteries with intact and denuded endothelium. BAM15, CCCP, and niclosamide had the comparable IC50 value of vasorelaxation in PE-induced constriction of rat mesenteric arteries. BAM15 was less cytotoxic in A10 cells compared with CCCP and niclosamide. BAM15 depolarized mitochondrial membrane potential, induced mitochondrial fission, increased mitochondrial ROS production, and increased mitochondrial oxygen consumption rate in A10 cells. BAM15 potently activated AMPK in A10 cells and the efficacy of BAM15 was stronger than that of CCCP, niclosamide, and AMPK positive activators metformin and AICAR. In conclusion, BAM15 activates AMPK in vascular smooth muscle cells with higher potency than that of CCCP, niclosamide and the known AMPK activators metformin and AICAR. The present work indicates that BAM15 is a potent AMPK activator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA