Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099338

RESUMEN

Rearrangement of NUTM1 gene (NUTM1r) is one of the most frequent aberrations occurring in infants (younger than 1 year at diagnosis) with B-cell precursor Acute Lymphoblastic Leukaemia (BCP-ALL). In this study we had the unique opportunity to analyze the umbilical cord blood (UCB) sample from one infant patient with NUTM1r BCP-ALL. Herein we reported for the first time that NUTM1r infant ALL arise prenatally, as both the patient-specific CUX1::NUTM1 fusion gene, as well as two IG/TR leukaemic markers were already present and detectable in the patient's UCB at birth. Our results clearly demonstrate the prenatal origin of NUTM1r infant BCP-ALL.

2.
Blood ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093982

RESUMEN

B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ~85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival (<30%), frequent relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis and that anti-NG2 immunotherapy strongly reduces/delays relapse in MLLr B-ALL xenograft models. Despite its contribution to MLLr B-ALL pathogenesis and its diagnostic utility, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-AF4 fusion protein. NG2 negatively regulates the expression of the GC receptor NR3C1 and confers GC resistance to MLLr B-ALL cells in vitro and in vivo. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via AP-1-mediated trans-repression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.

3.
Mol Cancer ; 23(1): 138, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970095

RESUMEN

BACKGROUND: The BCR::ABL1 is a hallmark of chronic myeloid leukemia (CML) and is also found in acute lymphoblastic leukemia (ALL). Most genomic breaks on the BCR side occur in two regions - Major and minor - leading to p210 and p190 fusion proteins, respectively. METHODS: By multiplex long-distance PCR or next-generation sequencing technology we characterized the BCR::ABL1 genomic fusion in 971 patients (adults and children, with CML and ALL: pediatric ALL: n = 353; pediatric CML: n = 197; adult ALL: n = 166; adult CML: n = 255 patients) and designed "Break-App" web tool to allow visualization and various analyses of the breakpoints. Pearson's Chi-Squared test, Kolmogorov-Smirnov test and logistic regression were used for statistical analyses. RESULTS: Detailed analysis showed a non-random distribution of breaks in both BCR regions, whereas ABL1 breaks were distributed more evenly. However, we found a significant difference in the distribution of breaks between CML and ALL. We found no association of breakpoints with any type of interspersed repeats or DNA motifs. With a few exceptions, the primary structure of the fusions suggests non-homologous end joining being responsible for the BCR and ABL1 gene fusions. Analysis of reciprocal ABL1::BCR fusions in 453 patients showed mostly balanced translocations without major deletions or duplications. CONCLUSIONS: Taken together, our data suggest that physical colocalization and chromatin accessibility, which change with the developmental stage of the cell (hence the difference between ALL and CML), are more critical factors influencing breakpoint localization than presence of specific DNA motifs.


Asunto(s)
Puntos de Rotura del Cromosoma , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas de Fusión bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Adulto , Niño , Masculino , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento
5.
J Virol ; 98(7): e0053424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38899932

RESUMEN

The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.


Asunto(s)
Sistema de Lectura Ribosómico , Infecciones por VIH , Duplicado del Terminal Largo de VIH , VIH-1 , ARN Mensajero , Replicación Viral , Humanos , Células HEK293 , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Infecciones por VIH/virología , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/inmunología , Duplicado del Terminal Largo de VIH/genética , VIH-1/fisiología , VIH-1/genética , Interacciones Huésped-Patógeno , Células Jurkat , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
7.
Leukemia ; 38(1): 21-30, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001170

RESUMEN

Measurable residual disease (MRD) monitoring in childhood acute myeloid leukemia (AML) is used to assess response to treatment and for early detection of imminent relapse. In childhood AML, MRD is typically evaluated using flow cytometry, or by quantitative detection of leukemia-specific aberrations at the mRNA level. Both methods, however, have significant limitations. Recently, we demonstrated the feasibility of MRD monitoring in selected subgroups of AML at the genomic DNA (gDNA) level. To evaluate the potential of gDNA-based MRD monitoring across all AML subtypes, we conducted a comprehensive analysis involving 133 consecutively diagnosed children. Integrating next-generation sequencing into the diagnostic process, we identified (presumed) primary genetic aberrations suitable as MRD targets in 97% of patients. We developed patient-specific quantification assays and monitored MRD in 122 children. The gDNA-based MRD monitoring via quantification of primary aberrations with a sensitivity of at least 10-4 was possible in 86% of patients; via quantification with sensitivity of 5 × 10-4, of secondary aberrations, or at the mRNA level in an additional 8%. Importantly, gDNA-based MRD exhibited independent prognostic value at early time-points in patients stratified to intermediate-/high-risk treatment arms. Our study demonstrates the broad applicability, feasibility, and clinical significance of gDNA-based MRD monitoring in childhood AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Niño , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Estudios de Cohortes , Recurrencia , Pronóstico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Citometría de Flujo , ARN Mensajero/genética , Genómica
8.
Haematologica ; 109(3): 740-750, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345487

RESUMEN

Pediatric acute myeloid leukemia (AML) is a highly heterogeneous disease making standardized measurable residual disease (MRD) assessment challenging. Currently, patient-specific DNA-based assays are only rarely applied for MRD assessment in pediatric AML. We tested whether quantification of genomic breakpoint-specific sequences via quantitative polymerase chain reaction (gDNA-PCR) provides a reliable means of MRD quantification in children with non-standardrisk AML and compared its results to those obtained with state-of-the-art ten-color flow cytometry (FCM). Breakpointspecific gDNA-PCR assays were established according to Euro-MRD consortium guidelines. FCM-MRD assessment was performed according to the European Leukemia Network guidelines with adaptations for pediatric AML. Of 77 consecutively recruited non-standard-risk pediatric AML cases, 49 (64%) carried a chromosomal translocation potentially suitable for MRD quantification. Genomic breakpoint analysis returned a specific DNA sequence in 100% (41/41) of the cases submitted for investigation. MRD levels were evaluated using gDNA-PCR in 243 follow-up samples from 36 patients, achieving a quantitative range of at least 10-4 in 231/243 (95%) of samples. Comparing gDNA-PCR with FCM-MRD data for 183 bone marrow follow-up samples at various therapy timepoints showed a high concordance of 90.2%, considering a cut-off of ≥0.1%. Both methodologies outperformed morphological assessment. We conclude that MRD monitoring by gDNA-PCR is feasible in pediatric AML with traceable genetic rearrangements and correlates well with FCM-MRD in the currently applied clinically relevant range, while being more sensitive below that. The methodology should be evaluated in larger cohorts to pave the way for clinical application.


Asunto(s)
Genómica , Leucemia Mieloide Aguda , Humanos , Niño , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Citometría de Flujo , Reordenamiento Génico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
9.
Front Biosci (Landmark Ed) ; 28(10): 273, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37919074

RESUMEN

Since the end of 2019, the SARS-CoV-2 virus started to spread in different countries, leading to a world-wide pandemia, with today's infection numbers of more than 690 million and with a case fatality rate of more than 6.9 million. In addition, about 65 million patients suffer from post/long-Covid syndromes after having infections with the SARS-CoV-2 virus or variants thereof. This review highlights the biology of the virus, summarizes our knowledge of some of the viral mechanisms that counteract our immune responses, and finally also discusses the different vaccines and their specific safety profiles. Also, the possibility to fight this virus with recently available drugs (Veklury, Lagevrio and Paxlovid) will be discussed. All these data clearly argue that SARS-CoV-2 variants still exhibit a dangerous potential-although with a lower case fatality rate-and that vaccination in combination with drug intake upon infection may help to lower the risk of developing chronic or temporary autoimmune diseases.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Biología
10.
Am J Physiol Cell Physiol ; 325(6): C1451-C1469, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899749

RESUMEN

Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins [e.g., COX4I1 (cytochrome c oxidase subunit 4I1)] and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Furthermore, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.NEW & NOTEWORTHY Induction of cell-lethal autophagy represents a possible strategy to combat glioblastoma (GBM). Here, we demonstrate that the novel iron chelator and OXPHOS inhibitor VLX600 exerts pronounced tumor cell-killing effects in adherently cultured GBM cells and glioblastoma stem-like cell (GSC) spheroid cultures that depend on the iron-chelating function of VLX600 and on autophagy activation, underscoring the context-dependent role of autophagy in therapy responses. VLX600 represents an interesting novel drug candidate for the treatment of this tumor.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Mitofagia/fisiología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Autofagia , Antineoplásicos/farmacología , Apoptosis , Proteínas Mitocondriales/metabolismo , Quelantes del Hierro/farmacología , Hierro , Proteínas Proto-Oncogénicas c-bcl-2 , Línea Celular Tumoral
11.
Nat Commun ; 14(1): 6242, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802982

RESUMEN

Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, ß-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.


Asunto(s)
Leucemia Mieloide Aguda , Receptores Sensibles al Calcio , Humanos , Receptores Sensibles al Calcio/genética , Proteínas Proto-Oncogénicas c-myc , Calcio , Proteínas de Fusión Oncogénica/metabolismo , Transducción de Señal , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Citarabina , Microambiente Tumoral
13.
Blood ; 142(21): 1806-1817, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37595275

RESUMEN

KMT2A-rearranged (KMT2A-r) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is widely recognized as a high-risk leukemia in both children and adults. However, there is a paucity of data on adults treated in recent protocols, and the optimal treatment strategy for these patients is still a matter of debate. In this study, we set out to refine the prognosis of adult KMT2A-r BCP-ALL treated with modern chemotherapy regimen and investigate the prognostic impact of comutations and minimal residual disease (MRD). Of 1091 adult patients with Philadelphia-negative BCP-ALL enrolled in 3 consecutive trials from the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), 141 (12.9%) had KMT2A-r, with 5-year cumulative incidence of relapse (CIR) and overall survival (OS) rates of 40.7% and 53.3%, respectively. Molecular profiling highlighted a low mutational burden in this subtype, reminiscent of infant BCP-ALL. However, the presence of TP53 and/or IKZF1 alterations defined a subset of patients with significantly poorer CIR (69.3% vs 36.2%; P = .001) and OS (28.1% vs 60.7%; P = .006) rates. Next, we analyzed the prognostic implication of MRD measured after induction and first consolidation, using both immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements and KMT2A genomic fusion as markers. In approximately one-third of patients, IG/TR rearrangements were absent or displayed clonal evolution during the disease course, compromising MRD monitoring. In contrast, KMT2A-based MRD was highly reliable and strongly associated with outcome, with early good responders having an excellent outcome (3-year CIR, 7.1%; OS, 92.9%). Altogether, our study reveals striking heterogeneity in outcomes within adults with KMT2A-r BCP-ALL and provides new biomarkers to guide risk-based therapeutic stratification.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Adulto , Neoplasia Residual/genética , Pronóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Recurrencia , Inmunoglobulinas , Medición de Riesgo
14.
iScience ; 26(6): 106900, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37378346

RESUMEN

Chromosomal translocations (CTs) are a genetic hallmark of cancer. They could be identified as recurrent genetic aberrations in hemato-malignancies and solid tumors. More than 40% of all "cancer genes" were identified in recurrent CTs. Most of these CTs result in the production of oncofusion proteins of which many have been studied over the past decades. They influence signaling pathways and/or alter gene expression. However, a precise mechanism for how these CTs arise and occur in a nearly identical fashion in individuals remains to be elucidated. Here, we performed experiments that explain the onset of CTs: (1) proximity of genes able to produce prematurely terminated transcripts, which lead to the production of (2) trans-spliced fusion RNAs, and finally, the induction of (3) DNA double-strand breaks which are subsequently repaired via EJ repair pathways. Under these conditions, balanced chromosomal translocations could be specifically induced. The implications of these findings will be discussed.

16.
CRISPR J ; 6(3): 289-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37200486

RESUMEN

"RNA-templated/directed DNA repair" is a biological mechanism that has been experimentally demonstrated in bacteria, yeast, and mammalian cells. Recent study has shown that small noncoding RNAs (DDRNAs) and/or newly RNAPII transcribed RNAs (dilncRNAs) are orchestrating the initial steps of double-strand break (DSB) repair. In this study, we demonstrate that also pre-mRNA could be used as direct or indirect substrate for DSB repair. Our test system is based on (1) a stably integrated mutant reporter gene that produces constitutively a nonspliceable pre-mRNA, (2) a transiently expressed sgRNA-guided dCas13b::ADAR fusion protein to specifically RNA edit the nonspliceable pre-mRNA, and (3) transiently expressed I-SceI to create a DSB situation to study the effect of spliceable pre-mRNA on DNA repair. Based on our data, the RNA-edited pre-mRNA was used in cis for the DSB repair process, thereby converting the genomically encoded mutant reporter gene into an active reporter gene. Overexpression and knockdown of several cellular proteins were performed to delineate their role in this novel "RNA-mediated end joining" pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , ARN Pequeño no Traducido , Animales , Precursores del ARN , Sistemas CRISPR-Cas/genética , Edición Génica , Reparación del ADN/genética , ADN/genética , Mamíferos/genética , Mamíferos/metabolismo
17.
Leukemia ; 37(6): 1216-1233, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100882

RESUMEN

KMT2A-rearranged acute lymphoblastic infant leukemia (KMT2A-r iALL) is associated with outsize risk of relapse and relapse mortality. We previously reported strong upregulation of the immediate early gene EGR3 in KMT2A::AFF1 iALL at relapse; now we provide analyses of the EGR3 regulome, which we assessed through binding and expression target analysis of an EGR3-overexpressing t(4;11) cell culture model. Our data identify EGR3 as a regulator of early B-lineage commitment. Principal component analysis of 50 KMT2A-r iALL patients at diagnosis and 18 at relapse provided strictly dichotomous separation of patients based on the expression of four B-lineage genes. Absence of B-lineage gene expression translates to more than two-fold poorer long-term event-free survival. In conclusion, our study presents four B-lineage genes with prognostic significance, suitable for gene expression-based risk stratification of KMT2A-r iALL patients.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Lactante , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Regulación hacia Arriba
18.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980191

RESUMEN

Mesenchymal stromal cells (MSCs) have the potential to suppress pathological activation of immune cells and have therefore been considered for the treatment of Graft-versus-Host-Disease. The clinical application of MSCs requires a process validation to ensure consistent quality. A flow cytometry-based mixed lymphocyte reaction (MLR) was developed to analyse the inhibitory effect of MSCs on T cell proliferation. Monoclonal antibodies were used to stimulate T cell expansion and determine the effect of MSCs after four days of co-culture based on proliferation tracking with the violet proliferation dye VPD450. Following the guidelines of the International Council for Harmonisation (ICH) Q2 (R1), the performance of n = 30 peripheral blood mononuclear cell (PBMC) donor pairs was assessed. The specific inhibition of T cells by viable MSCs was determined and precision values of <10% variation for repeatability and <15% for intermediate precision were found. Compared to a non-compendial reference method, a linear correlation of r = 0.9021 was shown. Serial dilution experiments demonstrated a linear range for PBMC:MSC ratios from 1:1 to 1:0.01. The assay was unaffected by PBMC inter-donor variability. In conclusion, the presented MLR can be used as part of quality control tests for the validation of MSCs as a clinical product.


Asunto(s)
Citometría de Flujo , Enfermedad Injerto contra Huésped , Prueba de Cultivo Mixto de Linfocitos , Células Madre Mesenquimatosas , Prueba de Cultivo Mixto de Linfocitos/métodos , Humanos , Células Madre Mesenquimatosas/citología , Leucocitos Mononucleares/citología , Control de Calidad , Citometría de Flujo/métodos , Citometría de Flujo/normas , Linfocitos T/citología , Proliferación Celular , Enfermedad Injerto contra Huésped/terapia
19.
Leukemia ; 37(1): 190-201, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435883

RESUMEN

MLL (KMT2a) translocations are found in ~10% of acute leukemia patients, giving rise to oncogenic MLL-fusion proteins. A common MLL translocation partner is ENL and associated with a poor prognosis in t(11;19) patients. ENL contains a highly conserved N-terminal YEATS domain that binds acetylated histones and interacts with the PAF1c, an epigenetic regulator protein complex essential for MLL-fusion leukemogenesis. Recently, wild-type ENL, and specifically the YEATS domain, was shown to be essential for leukemic cell growth. However, the inclusion and importance of the YEATS domain in MLL-ENL-mediated leukemogenesis remains unexplored. We found the YEATS domain is retained in 84.1% of MLL-ENL patients and crucial for MLL-ENL-mediated leukemogenesis in mouse models. Mechanistically, deletion of the YEATS domain impaired MLL-ENL fusion protein binding and decreased expression of pro-leukemic genes like Eya1 and Meis1. Point mutations that disrupt YEATS domain binding to acetylated histones decreased stem cell frequency and increased MLL-ENL-mediated leukemia latency. Therapeutically, YEATS containing MLL-ENL leukemic cells display increased sensitivity to the YEATS inhibitor SGC-iMLLT compared to control AML cells. Our results demonstrate that the YEATS domain is important for MLL-ENL fusion protein-mediated leukemogenesis and exposes an "Achilles heel" that may be therapeutically targeted for treating t(11;19) patients.


Asunto(s)
Histonas , Leucemia Mieloide Aguda , Ratones , Animales , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia Mieloide Aguda/genética , Translocación Genética , Epigénesis Genética , Células Madre/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
20.
Cells ; 11(19)2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36230931

RESUMEN

Latent reservoirs in human-immunodeficiency-virus-1 (HIV-1)-infected individuals represent a major obstacle in finding a cure for HIV-1. Hematopoietic stem and progenitor cells (HSPCs) have been described as potential HIV-1 targets, but their roles as HIV-1 reservoirs remain controversial. Here we provide additional evidence for the susceptibility of several distinct HSPC subpopulations to HIV-1 infection in vitro and in vivo. In vitro infection experiments of HSPCs were performed with different HIV-1 Env-pseudotyped lentiviral particles and with replication-competent HIV-1. Low-level infection/transduction of HSPCs, including hematopoietic stem cells (HSCs) and multipotent progenitors (MPP), was observed, preferentially via CXCR4, but also via CCR5-mediated entry. Multi-lineage colony formation in methylcellulose assays and repetitive replating of transduced cells provided functional proof of susceptibility of primitive HSPCs to HIV-1 infection. Further, the access to bone marrow samples from HIV-positive individuals facilitated the detection of HIV-1 gag cDNA copies in CD34+ cells from eight (out of eleven) individuals, with at least six of them infected with CCR5-tropic HIV-1 strains. In summary, our data confirm that primitive HSPC subpopulations are susceptible to CXCR4- and CCR5-mediated HIV-1 infection in vitro and in vivo, which qualifies these cells to contribute to the HIV-1 reservoir in patients.


Asunto(s)
Infecciones por VIH , VIH-1 , ADN Complementario , VIH-1/fisiología , Células Madre Hematopoyéticas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA