RESUMEN
Background: The Cobb angle is critical in assessing adolescent idiopathic scoliosis (AIS) patients. This study aimed to evaluate the error in selecting the upper- and lower-end vertebrae on AIS digital X-rays by experienced and novice observers and its correlation with the error in measuring the Cobb angle and determining the length of the scoliotic curves. Methods: Using the TraumaMeter v.873 software, eight raters independently evaluated 68 scoliotic curves. Results: The error percentage in the upper-end vertebra selection was higher than for the lower-end vertebra (44.7%, CI95% 41.05-48.3 compared to 35%, CI95% 29.7-40.4). The mean bias error (MBE) was 0.45 (CI95% 0.38-0.52) for the upper-end vertebra and 0.35 (CI% 0.69-0.91) for the lower-end vertebra. The percentage of errors in the choice of the end vertebrae was lower for the experienced than for the novices. There was a positive correlation (r = 0.673, p = 0.000) between the error in selecting the end vertebrae and determining the length of the scoliotic curves. Conclusions: We can conclude that errors in selecting end vertebrae are common among experienced and novice observers, with a greater error frequency for the upper-end vertebrae. Contrary to the consensus, the accuracy of determining the length of the scoliotic curve is limited by the Cobb method's reliance on the correct selection of the end vertebrae.
RESUMEN
Salvia officinalis (SO) is one of the most widely used plants in traditional medicine worldwide. In the present study, the effect of an ethanolic extract of S. officinalis leaves on hallmarks of cancer of HPV-16-positive cancer tumorigenic cells, TC-1, was analyzed in vitro. Phytochemical and spectroscopic analysis were performed. Additionally, the extract's flavonoid content, reducing iron, and antioxidant capacity were determined. In regard to the in vitro tests, the cytotoxic activity and its effect on the replicative capacity and on the cell migration of TC-1 cells were analyzed by viability and clonogenic, survival, and wound healing assays. The effect of a pre-treatment or treatment on 3D culture formation, growth, and reversion capacity was also examined. The results of the phytochemical analysis allowed the detection of tannins, saponins, steroids, and flavonoids. The flavonoids content was found to be 153.40 ± 10.68 µg/mg of extract. Additionally, the extract exhibited an antioxidant capacity and a ferric-reducing capacity of around 40% compared to the ascorbic acid. Thin layer chromatographic (TLC) analysis and spectroscopic tests showed the presence of compounds similar to quercetin and catechin flavonoids in the extract. In the in vitro assays, the SO extract induced in a concentration-dependent way changes in cell morphology, the decrease of cell viability, survival, and migration. At a concentration of 125 µg/mL, the extract inhibited spheroid formation, reduced their growth, and affected their reversion to 2D. Ethanolic extract of S. officinalis leaves had inhibitory effects on hallmarks of the cancer line HPV-16+. This suggests that the phytochemicals present in it may be a source of chemotherapeutics against cervical cancer.
RESUMEN
The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host-guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1-TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N-H...O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N-H...O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1-TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.
RESUMEN
Scorpions are a group of arthropods that strike fear in many people due to their severe medical symptoms, even death, caused by their venomous stings. Even so, not all scorpion species contain harmful venoms against humans but still have valuable bioactive molecules, which could be used in developing new pharmaceutical leads for treating important diseases. This work conducted a comprehensive analysis of the venom from the scorpion Thorellius intrepidus. The venom of T. intrepidus was separated by size exclusion chromatography, and four main fractions were obtained. Fraction IV (FIV) contained small molecules representing over 90% of the total absorbance at 280 nm. Analysis of fraction FIV by RP-HPLC indicated the presence of three main molecules (FIV.1, FIV.2, and FIV.3) with similar UV absorbance spectra profiles. The molecular masses of FIV.1, FIV.2, and FIV.3 were determined, resulting in 175.99, 190.07, and 218.16 Da, respectively. Further confirmation through 1H-NMR and 13C-NMR analyses revealed that these molecules were serotonin, N-methylserotonin, and bufotenidine. These intriguing compounds are speculated to play a pivotal role in self-defense and increasing venom toxicity and could also offer promising biotechnological applications as small bioactive molecules.
Asunto(s)
Picaduras de Escorpión , Venenos de Escorpión , Animales , Humanos , Escorpiones , Ponzoñas , Venenos de Escorpión/químicaRESUMEN
This study aimed to assess the bone regeneration of critical-size defects in rabbit calvaria filled with freshly crushed extracted teeth, comparing them with BTCP biomaterial and empty sites. Materials and methods: Twenty-one female New Zealand rabbits were used in this study. Two critical-size defects 6 mm in size were created in the skull bone, each with a 3 mm separation between them. Three experimental groups were evaluated: Group A (human sterilized crushed teeth granules alone), Group B (Bioner Bone, Bioner Sitemas Implantológicos), and Group C (unfilled defects). The animals were sacrificed at 4 and 8 weeks. Evaluation of the samples involved histological and histomorphometric analyses with radiographic evaluation. The histological evaluation showed a higher volume reduction in Group A compared with Group B (p < 0.05) and Control. Group A showed the highest values for cortical closure and bone formation around the particles, followed by Group B and Group C (p < 0.05). Within the limitations of this animal study, we can conclude that the use of human tooth particles leads to increased bone formation and reduced connective tissue in critical-size defects in rabbit calvaria when compared to BTCP biomaterial. The calvarial model is a robust base for the evaluation of different biomaterials.
RESUMEN
Computer technologies play a crucial role in orthopaedic surgery and are essential in personalising different treatments. Recent advances allow the usage of augmented reality (AR) for many orthopaedic procedures, which include different types of knee surgery. AR assigns the interaction between virtual environments and the physical world, allowing both to intermingle (AR superimposes information on real objects in real-time) through an optical device and allows personalising different processes for each patient. This article aims to describe the integration of fiducial markers in planning knee surgeries and to perform a narrative description of the latest publications on AR applications in knee surgery. Augmented reality-assisted knee surgery is an emerging set of techniques that can increase accuracy, efficiency, and safety and decrease the radiation exposure (in some surgical procedures, such as osteotomies) of other conventional methods. Initial clinical experience with AR projection based on ArUco-type artificial marker sensors has shown promising results and received positive operator feedback. Once initial clinical safety and efficacy have been demonstrated, the continued experience should be studied to validate this technology and generate further innovation in this rapidly evolving field.
RESUMEN
BACKGROUND: From the start of the SARS-CoV-2 outbreak, global sequencing efforts have generated an unprecedented amount of genomic data. Nonetheless, unequal sampling between high-income and low-income countries hinders the implementation of genomic surveillance systems at the global and local level. Filling the knowledge gaps of genomic information and understanding pandemic dynamics in low-income countries is essential for public health decision making and to prepare for future pandemics. In this context, we aimed to discover the timing and origin of SARS-CoV-2 variant introductions in Mozambique, taking advantage of pandemic-scale phylogenies. METHODS: We did a retrospective, observational study in southern Mozambique. Patients from Manhiça presenting with respiratory symptoms were recruited, and those enrolled in clinical trials were excluded. Data were included from three sources: (1) a prospective hospital-based surveillance study (MozCOVID), recruiting patients living in Manhiça, attending the Manhiça district hospital, and fulfilling the criteria of suspected COVID-19 case according to WHO; (2) symptomatic and asymptomatic individuals with SARS-CoV-2 infection recruited by the National Surveillance system; and (3) sequences from SARS-CoV-2-infected Mozambican cases deposited on the Global Initiative on Sharing Avian Influenza Data database. Positive samples amenable for sequencing were analysed. We used Ultrafast Sample placement on Existing tRees to understand the dynamics of beta and delta waves, using available genomic data. This tool can reconstruct a phylogeny with millions of sequences by efficient sample placement in a tree. We reconstructed a phylogeny (~7·6 million sequences) adding new and publicly available beta and delta sequences. FINDINGS: A total of 5793 patients were recruited between Nov 1, 2020, and Aug 31, 2021. During this time, 133â328 COVID-19 cases were reported in Mozambique. 280 good quality new SARS-CoV-2 sequences were obtained after the inclusion criteria were applied and an additional 652 beta (B.1.351) and delta (B.1.617.2) public sequences were included from Mozambique. We evaluated 373 beta and 559 delta sequences. We identified 187 beta introductions (including 295 sequences), divided in 42 transmission groups and 145 unique introductions, mostly from South Africa, between August, 2020 and July, 2021. For delta, we identified 220 introductions (including 494 sequences), with 49 transmission groups and 171 unique introductions, mostly from the UK, India, and South Africa, between April and November, 2021. INTERPRETATION: The timing and origin of introductions suggests that movement restrictions effectively avoided introductions from non-African countries, but not from surrounding countries. Our results raise questions about the imbalance between the consequences of restrictions and health benefits. This new understanding of pandemic dynamics in Mozambique can be used to inform public health interventions to control the spread of new variants. FUNDING: European and Developing Countries Clinical Trials, European Research Council, Bill & Melinda Gates Foundation, and Agència de Gestió d'Ajuts Universitaris i de Recerca.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Filogenia , Mozambique/epidemiología , Estudios Retrospectivos , Estudios ProspectivosRESUMEN
Sulfamethazine [N1-(4,6-dimethylpyrimidin-2-yl)sulfanilamide] is an antimicrobial drug that possesses functional groups capable of acting as hydrogen-bond donors and acceptors, which make it a suitable supramolecular building block for the formation of cocrystals and salts. We report here the crystal structure and solid-state characterization of the 1:1 salt piperidinium sulfamethazinate (PPD+·SUL-, C5H12N+·C12H13N4O2S-) (I). The salt was obtained by the solvent-assisted grinding method and was characterized by IR spectroscopy, powder X-ray diffraction, solid-state 13C NMR spectroscopy and thermal analysis [differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)]. Salt I crystallized in the monoclinic space group P21/n and showed a 1:1 stoichiometry revealing proton transfer from SUL to PPD to form salt I. The PPD+ and SUL- ions are connected by N-H+...O and N-H+...N interactions. The self-assembly of SUL- anions displays the amine-sulfa C(8) motif. The supramolecular architecture of salt I revealed the formation of interconnected supramolecular sheets.
RESUMEN
Background: Lower quantity and poorer sleep quality are common in most older adults, especially for those who live in a nursing home. The use of wearable devices, which measure some parameters such as the sleep stages, could help to determine the influence of sleep quality in daily activity among nursing home residents. Therefore, this study aims to analyse the influence of sleep and its changes concerning the health status and daily activity of older people who lived in a nursing home, by monitoring the participants for a year with Xiaomi Mi Band 2. Methods: This is a longitudinal study set in a nursing home in [Details omitted for double-anonymized peer reviewed]. The Xiaomi Mi Band 2 will be used to measure biomedical parameters and different assessment tools will be administered to participants for evaluating their quality of life, sleep quality, cognitive state, and daily functioning. Results: A total of 21 nursing home residents participated in the study, with a mean age of 86.38 ± 9.26. The main outcomes were that sleep may influence daily activity, cognitive state, quality of life, and level of dependence in activities of daily life. Moreover, environmental factors and the passage of time could also impact sleep. Conclusions: Xiaomi Mi Band 2 could be an objective tool to assess the sleep of older adults and know its impact on some factors related to health status and quality of life of older nursing homes residents. Trial Registration: NCT04592796 (Registered 16 October 2020) Available on: https://clinicaltrials.gov/ct2/show/NCT04592796.
RESUMEN
Intramolecular charge transfer (ICT) effects are responsible for the photoluminescent properties of coumarins. Hence, optical properties with different applications can be obtained by ICT modulation. Herein, four 3-acetyl-2H-chromen-2-ones (1a-d) and their corresponding fluorescent hybrids 3- (phenylhydrazone)-chromen-2-ones (2a-d) were synthesized in 74-65% yields. The UV-Vis data were in the 295-428 nm range. The emission depends on the substituent in position C-7 bearing electron-donating groups. Compounds 1b-d showed good optical properties due to the D-π-A structural arrangement. In compounds 2a-d, there is a quenching effect of fluorescence in solution. However, in the solid, an increase is shown due to an aggregation-induced emission (AIE) effect given by the rotational restraints and stacking in the crystal. Computational calculations of the HOMO-LUMO orbitals indicate high absorbance and emission values of the molecules, and gap values represent the bathochromic effect and the electronic efficiency of the compounds. Compounds 1a-d and 2a-d are good candidates for optical applications, such as OLEDs, organic solar cells, or fluorescence markers.
Asunto(s)
Cumarinas , Electrones , Cumarinas/química , Teoría Funcional de la Densidad , Espectrometría de FluorescenciaRESUMEN
Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression. In the present work, the design and synthesis of a new family of dihydropyrazole-carbohydrazide derivatives (DPCH) derivatives focused on HDAC6 inhibitory activity is presented. Computational chemistry approaches were employed to rationalize the design and evaluate their physicochemical and toxic-biological properties. The new family of nine DPCH was synthesized and characterized. Compounds exhibited optimal physicochemical and toxicobiological properties for potential application as drugs to be used in humans. The in silico studies showed that compounds with -Br, -Cl, and -OH substituents had good affinity with the catalytic domain 2 of HDAC6 like the reference compounds. Nine DPCH derivatives were assayed on MCF-7 and MDA-MB-231 BC cell lines, showing antiproliferative activity with IC50 at µM range. Compound 2b showed, in vitro, an IC50 value of 12 ± 3 µM on human HDAC6. The antioxidant activity of DPCH derivatives showed that all the compounds exhibit antioxidant activity similar to that of ascorbic acid. In conclusion, the DPCH derivatives are promising drugs with therapeutic potential for the epigenetic treatment of BC, with low cytotoxicity towards healthy cells and important antioxidant activity.
RESUMEN
Cocrystals of 2,7-dihydroxynaphthalene (DHN, or naphthalene-2,7-diol) with isoniazid (pyridine-4-carbohydrazide) (INH), denoted DHN-INH [C10H8O2·C6H7N3O, (I)], and piracetam [2-(2-oxopyrrolidin-1-yl)acetamide] (PIR), denoted DHN-PIR [C10H8O2·C6H10N2O2, (II)], were obtained by the solvent-assisted grinding method and characterized by IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction. Cocrystal (I) crystallized in the triclinic space group P-1 and showed a 2:2 stoichiometry. DHN and INH molecules are connected by O-H...N(pyridine) and O-H...N(hydrazide) hydrogen bonds. Cocrystal (II) crystallized in the space group Pca21 with a 1:1 stoichiometry. DHN and PIR molecules are connected by O-H...O=C hydrogen bonds. The supramolecular architecture of cocrystal (I) showed interlinked supramolecular tapes; meanwhile, in cocrystal (II), interlinked supramolecular sheets were observed.
Asunto(s)
Isoniazida , Piracetam , Cristalización/métodos , Cristalografía por Rayos X , Enlace de Hidrógeno , Isoniazida/química , NaftolesRESUMEN
The posterior condylar offset (PCO) has been proposed as a determinant of a postoperative range of motion after total knee arthroplasty, although there is no consensus. This study aimed to demonstrate the error introduced by forcing the femoral rotation to overlap both condyles for the "true" lateral X-ray projection for the PCO measurement. We hypothesize that the angular discrepancy between the posterior femoral cortical reference plane and the posterior condylar axis plane due to rotation invalidates the acquisition of reliable measurements on X-rays. We have measured the PCO in 50 "true" lateral X-rays and compared it with the medial and lateral condyles PCO's assessed on a computed tomography-scan-based three-dimensional (3D) model of each knee. PCO based on the 3D imaging differed significantly between the medial (25.8 ± 3.67 mm) and lateral (16.59 ± 2.92 mm) condyle. Three-dimensional PCO values differ significantly from those determined in the radiographic studies. Also, the mean values of the medial and lateral condyle PCO measurements differed significantly (p < 0.001) with all PCO measurements on radiographs. We have identified a difference between the posterior cortical plane and the posterior condylar axis projections, both on the axial plane with a mean value of 11.23° ± 3.64°. Our data show an interplane discrepancy angle between the posterior femoral diaphyseal cortical and the posterior condylar axis plane (due to the femur's necessary rotation to overlap both condyles) may invalidate the 2D X-ray PCO assessment as a reliable measurement.
Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Artroplastia de Reemplazo de Rodilla/métodos , Fémur/diagnóstico por imagen , Fémur/cirugía , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Reproducibilidad de los ResultadosRESUMEN
Patient-specific instrumentation (PSI) has been introduced to simplify and make total knee arthroplasty (TKA) surgery more precise, effective, and efficient. We performed this study to determine whether the postoperative coronal alignment is related to preoperative deformity when computed tomography (CT)-based PSI is used for TKA surgery, and how the PSI approach compares with deformity correction obtained with conventional instrumentation. We analyzed pre- and post-operative full length standing hip-knee-ankle (HKA) X-rays of the lower limb in both groups using a convention > 180 degrees for valgus alignment and < 180 degrees for varus alignment. For the PSI group, the mean (± SD) pre-operative HKA angle was 172.09 degrees varus (± 6.69 degrees) with a maximum varus alignment of 21.5 degrees (HKA 158.5) and a maximum valgus alignment of 14.0 degrees. The mean post-operative HKA was 179.43 degrees varus (± 2.32 degrees) with a maximum varus alignment of seven degrees and a maximum valgus alignment of six degrees. There has been a weak correlation among the values of the pre- and post-operative HKA angle. The adjusted odds ratio (aOR) of postoperative alignment outside the range of 180 ± 3 degrees was significantly higher with a preoperative varus misalignment of 15 degrees or more (aOR: 4.18; 95% confidence interval: 1.35-12.96; p = 0.013). In the control group (conventional instrumentation), this loss of accuracy occurs with preoperative misalignment of 10 degrees. Preoperative misalignment below 15 degrees appears to present minimal influence on postoperative alignment when a CT-based PSI system is used. The CT-based PSI tends to lose accuracy with preoperative varus misalignment over 15 degrees.
Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Artroplastia de Reemplazo de Rodilla/métodos , Humanos , Articulación de la Rodilla/cirugía , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/cirugía , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
Accurate predictions of COVID-19 epidemic dynamics may enable timely organizational interventions in high-risk regions. We exploited the interconnection of the Fresenius Medical Care (FMC) European dialysis clinic network to develop a sentinel surveillance system for outbreak prediction. We developed an artificial intelligence-based model considering the information related to all clinics belonging to the European Nephrocare Network. The prediction tool provides risk scores of the occurrence of a COVID-19 outbreak in each dialysis center within a 2-week forecasting horizon. The model input variables include information related to the epidemic status and trends in clinical practice patterns of the target clinic, regional epidemic metrics, and the distance-weighted risk estimates of adjacent dialysis units. On the validation dates, there were 30 (5.09%), 39 (6.52%), and 218 (36.03%) clinics with two or more patients with COVID-19 infection during the 2-week prediction window. The performance of the model was suitable in all testing windows: AUC = 0.77, 0.80, and 0.81, respectively. The occurrence of new cases in a clinic propagates distance-weighted risk estimates to proximal dialysis units. Our machine learning sentinel surveillance system may allow for a prompt risk assessment and timely response to COVID-19 surges throughout networked European clinics.
Asunto(s)
COVID-19 , Inteligencia Artificial , Brotes de Enfermedades , Humanos , Diálisis Renal , SARS-CoV-2 , Vigilancia de GuardiaRESUMEN
Individualized pre-operative assessment of the patterns of the lower extremity anatomy and deformities in patients undergoing total knee arthroplasty seems essential for a successful surgery. In the present study, we investigated the relationship among the coronal alignment and the rotational profile of the lower extremities in the Caucasian population with end-stage knee osteoarthritis. We conducted a prospective study of 385 knees that underwent a pre-operative three-dimensional computed tomography-based model. The lower extremity alignment was determined (mechanical tibiofemoral or hip-knee-ankle angle, supplementary angle of the femoral lateral distal angle, and proximal medial tibial angle). For each case, the femoral distal rotation (condylar twist angle), the femoral proximal version, and the tibial torsion were determined. As the coronal alignment changed from varus to valgus, the femoral external rotation increased (r = 0.217; p < 0.0005). As the coronal alignment changed from varus to valgus, the external tibial torsion increased (r = 0.248; p < 0.0005). No correlation was found between the global coronal alignment and the femoral version. The present study demonstrates a linear relationship between the coronal alignment and the rotational geometry of the distal femur. This correlation also occurs with the tibial torsion. Perhaps outcomes of total knee arthroplasty surgery might be improved by addressing these deformities as well.
Asunto(s)
Fémur/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/etnología , Tibia/diagnóstico por imagen , Anomalía Torsional/diagnóstico por imagen , Población Blanca , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla/métodos , Femenino , Fémur/fisiopatología , Humanos , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/fisiopatología , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/cirugía , Periodo Preoperatorio , Estudios Prospectivos , Rotación , Tibia/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Anomalía Torsional/fisiopatologíaRESUMEN
There have been remarkable advances in knee replacement surgery over the last few decades. One of the concerns continues to be the accuracy in achieving the desired alignment. Patient-specific instrumentation (PSI) was developed to increase component placement accuracy, but the available evidence is not conclusive. Our study aimed to determine a PSI system's three-dimensional accuracy on 3D virtual models obtained by post-operative computed tomography. We compared the angular placement values of 35 total knee arthroplasties (TKAs) operated within a year obtained with the planned ones, and we analyzed the possible relationships between alignment and patient-reported outcomes. The mean (SD) discrepancies measured by two experienced engineers to the planned values observed were 1.64° (1.3°) for the hip-knee-ankle angle, 1.45° (1.06°) for the supplementary angle of the femoral lateral distal angle, 1.44° (0.97°) for the proximal medial tibial angle, 2.28° (1.78°) for tibial slope, 0.64° (1.09°) for femoral sagittal flexion, and 1.42° (1.06°) for femoral rotation. Neither variables related to post-operative alignment nor the proportion of change between pre-and post-operative alignment influenced the patient-reported outcomes. The evaluated PSI system's three-dimensional alignment analysis showed a statistically significant difference between the angular values planned and those obtained. However, we did not find a relevant effect size, and this slight discrepancy did not impact the clinical outcome.
RESUMEN
PURPOSE: Several studies have been carried out, and there is no classification for proximal humeral fractures (PHF) exempted from variability in interpretation and with questioned reliability. In the present study, we investigated the 'absolute diagnostic reliability' of the most currently used classifications for PHFs on a single anterior-posterior X-ray shoulder image. METHODS: Six orthopaedic surgeons, with varying levels of experience in shoulder pathology, evaluated radiographs from 30 proximal humeral fractures, according to the 'absolute reliability' criteria. Each of the observers rated each fracture according to Neer, Müller/AO and Codman-Hertel's classification systems. RESULTS: The overall inter-observer agreement (κ) has been 0.297 (CI95% 0.280 to 0.314) for the Neer's classification system, 0.206 (CI95% 0.193 to 0.218) for the Müller/AO classification system, and 0.315 (CI95% 0.334 to 0.368) for the Codman-Hertel classification system. We found loss of agreement in Neer's classification as the study progressed, low agreement in the AO classification, and stable values in the different evaluations with the best degree of agreement for Codman-Hertel classification, with a moderate agreement in the second evaluation among the six evaluators. CONCLUSION: The Neer, AO, and Hertel-Codman classification systems for PHF with a single radiographic projection have a difficult interpretation for orthopaedic surgeons of varying levels of experience, and therefore substantial agreements are not obtained.
Asunto(s)
Fracturas del Hombro/clasificación , Fracturas del Hombro/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Cirujanos Ortopédicos , Estudios Prospectivos , Reproducibilidad de los ResultadosRESUMEN
The aim of this study was to evaluate the effect of implant surface treatment with carboxyethylphosphonic acid and fibroblast growth factor 2 on the bone-implant interface during the osseointegration period in vivo using an animal model. The present research was carried out in six minipigs, in whose left tibia implants were inserted as follows: eight implants with a standard surface treatment, for the control group, and eight implants with a surface treatment of carboxyethylphosphonic acid and immobilization of FGF-2, for the test group. At 4 weeks after the insertion of the implants, the animals were sacrificed for the histomorphometric analysis of the samples. The means of the results for the implant-bone contact variable (BIC) were 46.39 ± 17.49% for the test group and 34.00 ± 9.92% for the control group; the difference was not statistically significant. For the corrected implant-bone contact variable (BICc), the mean value of the test group was 60.48 ± 18.11%, and that for the control group, 43.08 ± 10.77%; the difference was statistically significant (p-value = 0.035). The new bone formation (BV/TV) showed average results of 27.28 ± 3.88% for the test group and 26.63 ± 7.90% for the control group, meaning that the differences were not statistically significant (p-value = 0.839). Regarding the bone density at the interthread level (BAI/TA), the mean value of the test group was 32.27 ± 6.70%, and that of the control group was 32.91 ± 7.76%, with a p-value of 0.863, while for the peri-implant density (BAP/TA), the mean value of the test group was 44.96 ± 7.55%, and that for the control group was 44.80 ± 8.68%, without a significant difference between the groups. The current research only found a significant difference for the bone-implant contact at the cortical level; therefore, it could be considered that FGF-2 acts on the mineralization of bone tissue. The application of carboxyethylphosphonic acid on the surface of implants can be considered a promising alternative as a biomimetic coating for the immobilization of FGF-2. Despite no differences in the new bone formation around the implants or in the interthread or peri-implant bone density being detected, the biofunctionalization of the implant surface with FGF-2 accelerates the mineralization of the bone-implant interface at the cortical level, thereby reducing the osseointegration period.
RESUMEN
(1) Background: Work stress is one of the most relevant issues in public health. It has a significant impact on health, especially the development of mental disorders, causing occupational imbalance. There is a growing interest in the development of tools with a positive effect on workers. To this end, wearable technology is becoming increasingly popular, as it measures biometric variables like heartbeat, activity, and sleep. This information may be used to assess the stress a person is suffering, which could allow the development of stress coping strategies, both at a professional and personal level. (2) Methods: This paper describes an observational, analytical, and longitudinal study which will be set at a research center in A Coruña, Spain. Various scales and questionnaires will be filled in by the participants throughout the study. For the statistical analysis, specific methods will be used to evaluate the association between numerical and categorical variables. (3) Discussion: This study will lay the foundation for a bigger, more complete study to assess occupational stress in different work environments. This will allow us to begin to understand how occupational stress influences daily life activity and occupational balance, which could directly enhance the quality of life of workers if the necessary measures are taken.