Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2025): 20240535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38917861

RESUMEN

Empirical data relating body mass to immune defence against infections remain limited. Although the metabolic theory of ecology predicts that larger organisms would have weaker immune responses, recent studies have suggested that the opposite may be true. These discoveries have led to the safety factor hypothesis, which proposes that larger organisms have evolved stronger immune defences because they carry greater risks of exposure to pathogens and parasites. In this study, we simulated sepsis by exposing blood from nine primate species to a bacterial lipopolysaccharide (LPS), measured the relative expression of immune and other genes using RNAseq, and fitted phylogenetic models to determine how gene expression was related to body mass. In contrast to non-immune-annotated genes, we discovered hypermetric scaling in the LPS-induced expression of innate immune genes, such that large primates had a disproportionately greater increase in gene expression of immune genes compared to small primates. Hypermetric immune gene expression appears to support the safety factor hypothesis, though this pattern may represent a balanced evolutionary mechanism to compensate for lower per-transcript immunological effectiveness. This study contributes to the growing body of immune allometry research, highlighting its importance in understanding the complex interplay between body size and immunity over evolutionary timescales.


Asunto(s)
Primates , Sepsis , Transcriptoma , Animales , Sepsis/veterinaria , Sepsis/inmunología , Lipopolisacáridos , Inmunidad Innata , Tamaño Corporal , Filogenia
2.
Brain Behav Immun ; 119: 6-13, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552921

RESUMEN

When organisms move into new areas, they are likely to encounter novel food resources. Even if they are nutritious, these foods can also be risky, as they might be contaminated by parasites. The behavioural immune system of animals could help them avoid the negative effects of contaminated resources, but our understanding of behavioural immunity is limited, particularly whether and how behavioural immunity interacts with physiological immunity. Here, we asked about the potential for interplay between these two traits, specifically how the propensity of an individual house sparrow (Passer domesticus) to take foraging risks was related to its ability to regulate a key facet of its immune response to bacterial pathogens. Previously, we found that sparrows at expanding geographic range edges were more exploratory and less risk-averse to novel foods; in those same populations, birds tended to over-express Toll-like receptor 4 (TLR4), a pattern-recognition receptor that distinguishes cell-wall components of Gram-negative bacteria, making it the major sensor of potentially lethal gut microbial infections including salmonellosis. When we investigated how birds would respond to a typical diet (i.e., mixed seeds) spiked with domesticated chicken faeces, birds that expressed more TLR4 or had higher epigenetic potential for TLR4 (more CpG dinucleotides in the putative gene promoter) ate more food, spiked or not. Females expressing abundant TLR4 were also willing to take more foraging risks and ate more spiked food. In males, TLR4 expression was not associated with risk-taking. Altogether, our results indicate that behaviour and immunity covary among individual house sparrows, particularly in females where those birds that maintain more immune surveillance also are more disposed to take foraging risks.


Asunto(s)
Epigénesis Genética , Conducta Alimentaria , Gorriones , Animales , Gorriones/inmunología , Femenino , Conducta Alimentaria/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Asunción de Riesgos , Expresión Génica , Pollos/inmunología , Masculino , Conducta Animal/fisiología
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220512, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38310934

RESUMEN

Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Proteínas de Unión a Tacrolimus , Humanos , Encéfalo/fisiología , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Proteínas de Unión a Tacrolimus/fisiología
4.
Evol Lett ; 8(1): 161-171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370553

RESUMEN

Organisms are experiencing higher average temperatures and greater temperature variability because of anthropogenic climate change. Some populations respond to changes in temperature by shifting their ranges or adjusting their phenotypes via plasticity and/or evolution, while others go extinct. Predicting how populations will respond to temperature changes is challenging because extreme and unpredictable climate changes will exert novel selective pressures. For this reason, there is a need to understand the physiological mechanisms that regulate organismal responses to temperature changes. In vertebrates, glucocorticoid hormones mediate physiological and behavioral responses to environmental stressors and thus are likely to play an important role in how vertebrates respond to global temperature changes. Glucocorticoids have cascading effects that influence the phenotype and fitness of individuals, and some of these effects can be transmitted to offspring via trans- or intergenerational effects. Consequently, glucocorticoid-mediated responses could affect populations and could even be a powerful driver of rapid evolutionary change. Here, we present a conceptual framework that outlines how temperature changes due to global climate change could affect population persistence via glucocorticoid responses within and across generations (via epigenetic modifications). We briefly review glucocorticoid physiology, the interactions between environmental temperatures and glucocorticoid responses, and the phenotypic consequences of glucocorticoid responses within and across generations. We then discuss possible hypotheses for how glucocorticoid-mediated phenotypic effects might impact fitness and population persistence via evolutionary change. Finally, we pose pressing questions to guide future research. Understanding the physiological mechanisms that underpin the responses of vertebrates to elevated temperatures will help predict population-level responses to the changing climates we are experiencing.

5.
J Hered ; 115(1): 11-18, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910845

RESUMEN

As a highly successful introduced species, house sparrows (Passer domesticus) respond rapidly to their new habitats, generating phenotypic patterns across their introduced range that resemble variation in native regions. Epigenetic mechanisms likely facilitate the success of introduced house sparrows by aiding particular individuals to adjust their phenotypes plastically to novel conditions. Our objective here was to investigate patterns of DNA methylation among populations of house sparrows at a broad geographic scale that included different introduction histories: invading, established, and native. We defined the invading category as the locations with introductions less than 70 years ago and the established category as the locations with greater than 70 years since introduction. We screened DNA methylation among individuals (n = 45) by epiRADseq, expecting that variation in DNA methylation among individuals from invading populations would be higher when compared with individuals from established and native populations. Invading house sparrows had the highest variance in DNA methylation of all three groups, but established house sparrows also had higher variance than native ones. The highest number of differently methylated regions were detected between invading and native populations of house sparrow. Additionally, DNA methylation was negatively correlated to time-since introduction, which further suggests that DNA methylation had a role in the successful colonization's of house sparrows.


Asunto(s)
Metilación de ADN , Gorriones , Humanos , Animales , Gorriones/genética , Epigénesis Genética , Ecosistema
6.
Physiol Biochem Zool ; 96(5): 332-341, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37713719

RESUMEN

AbstractSeasonality in infectious disease prevalence is predominantly attributed to changes in exogenous risk factors. For vectored pathogens, high abundance, activity, and/or diversity of vectors can exacerbate disease risk for hosts. Conversely, many host defenses, particularly immune responses, are seasonally variable. Seasonality in host defenses has been attributed, in part, to the proximate (i.e., metabolic) and ultimate (i.e., reproductive fitness) costs of defense. In this study, our goal was to discern whether any seasonality is observable in how a common avian host, the house sparrow (Passer domesticus), copes with a common zoonotic arbovirus, the West Nile virus (WNV), when hosts are studied under controlled conditions. We hypothesized that if host biorhythms play a role in vector-borne disease seasonality, birds would be most vulnerable to WNV when breeding and/or molting (i.e., when other costly physiological activities are underway) and thus most transmissive of WNV at these times of year (unless birds died from infection). Overall, the results only partly supported our hypothesis. Birds were most transmissive of WNV in fall (after their molt is complete and when WNV is most prevalent in the environment), but WNV resistance, WNV tolerance, and WNV-dependent mortality did not vary among seasons. These results collectively imply that natural arboviral cycles could be partially underpinned by endogenous physiological changes in hosts. However, other disease systems warrant study, as this result could be specific to the nonnative and highly commensal nature of the house sparrow or a consequence of the relative recency of the arrival of WNV to the United States.


Asunto(s)
Enfermedades de las Aves , Gorriones , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Virus del Nilo Occidental/fisiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Enfermedades de las Aves/epidemiología
7.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313881

RESUMEN

Animals encounter many novel and unpredictable challenges when moving into new areas, including pathogen exposure. Because effective immune defenses against such threats can be costly, plastic immune responses could be particularly advantageous, as such defenses can be engaged only when context warrants activation. DNA methylation is a key regulator of plasticity via its effects on gene expression. In vertebrates, DNA methylation occurs exclusively at CpG dinucleotides and, typically, high DNA methylation decreases gene expression, particularly when it occurs in promoters. The CpG content of gene regulatory regions may therefore represent one form of epigenetic potential (EP), a genomic means to enable gene expression and hence adaptive phenotypic plasticity. Non-native populations of house sparrows (Passer domesticus) - one of the world's most cosmopolitan species - have high EP in the promoter of a key microbial surveillance gene, Toll-like receptor 4 (TLR4), compared with native populations. We previously hypothesized that high EP may enable sparrows to balance the costs and benefits of inflammatory immune responses well, a trait critical to success in novel environments. In the present study, we found support for this hypothesis: house sparrows with high EP in the TLR4 promoter were better able to resist a pathogenic Salmonella enterica infection than sparrows with low EP. These results support the idea that high EP contributes to invasion and perhaps adaptation in novel environments, but the mechanistic details whereby these organismal effects arise remain obscure.


Asunto(s)
Salmonella enterica , Gorriones , Animales , Receptor Toll-Like 4/genética , Salmonella enterica/genética , Gorriones/fisiología , Epigénesis Genética
8.
Am Nat ; 201(2): 287-301, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724463

RESUMEN

AbstractTerrestrial mammals span seven orders of magnitude in body size, ranging from the <2-g Etruscan pygmy shrew (Suncus etruscus) to the >3,900-kg African elephant (Loxodonta africana). Although body size profoundly affects the behavior, physiology, ecology, and evolution of species, how investment in functional immune defenses changes with body size across species is unknown. Here, we (1) developed a novel 12-point dilution curve approach to describe and compare antibacterial capacity against three bacterial species among >160 terrestrial species of mammals and (2) tested published predictions about the scaling of immune defenses. Our study focused on the safety factor hypothesis, which predicts that broad, early-acting immune defenses should scale hypermetrically with body mass. However, our three statistical approaches demonstrated that antibacterial activity in sera across mammals exhibits isometry; killing capacity did not change with body size across species. Intriguingly, this result indicates that the serum of a large mammal is less hospitable to bacteria than would be predicted by its metabolic rates. In other words, if metabolic rates underlie the rates of physiological reactions as postulated by the metabolic theory of ecology, large species should have disproportionately lower antibacterial capacity than small species, but they do not. These results have direct implications for effectively modeling the evolution of immune defenses and identifying potential reservoir hosts of pathogens.


Asunto(s)
Mamíferos , Animales , Mamíferos/fisiología , Tamaño Corporal
9.
J Hered ; 114(3): 207-218, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36808492

RESUMEN

Variation in DNA methylation is associated with many ecological and life history traits, including niche breadth and lifespan. In vertebrates, DNA methylation occurs almost exclusively at "CpG" dinucleotides. Yet, how variation in the CpG content of the genome impacts organismal ecology has been largely overlooked. Here, we explore associations between promoter CpG content, lifespan and niche breadth among 60, amniote vertebrate species. The CpG content of 16 functionally relevant gene promoters was strongly, positively associated with lifespan in mammals and reptiles, but was not related to niche breadth. Possibly, by providing more substrate for CpG methylation to occur, high promoter CpG content extends the time taken for deleterious, age-related errors in CpG methylation patterns to accumulate, thereby extending lifespan. The association between CpG content and lifespan was driven by gene promoters with intermediate CpG enrichment-those known to be predisposed to regulation by methylation. Our findings provide novel support for the idea that high CpG content has been selected for in long-lived species to preserve the capacity for gene expression regulation by CpG methylation. Intriguingly, promoter CpG content was also dependent on gene function in our study; immune genes had on average 20% less CpG sites than metabolic- and stress-related genes.


Asunto(s)
Longevidad , Vertebrados , Animales , Longevidad/genética , Vertebrados/genética , Metilación de ADN , Mamíferos/genética , Biomarcadores , Epigénesis Genética
10.
Physiol Biochem Zool ; 96(6): 405-417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38237194

RESUMEN

AbstractHow do large and small reptiles defend against infections, given the consequences of body mass for physiology and disease transmission? Functionally equivalent mammalian and avian granulocytes increased disproportionately with body mass (i.e., scaled hypermetrically), such that large organisms had higher concentrations than expected by a prediction of proportional protection across sizes. However, as these scaling relationships were derived from endothermic animals, they do not necessarily inform the scaling of leukocyte concentration for ectothermic reptiles that have a different physiology and evolutionary history. Here, we asked whether and how lymphocyte and heterophil concentrations relate to body mass among more than 120 reptile species. We compared these relationships to those found in birds and mammals and to existing scaling frameworks (i.e., protecton, complexity, rate of metabolism, or safety factor hypotheses). Both lymphocyte and heterophil concentrations scaled almost isometrically among reptiles. In contrast, functionally equivalent granulocytes scaled hypermetrically and lymphocytes scaled isometrically in birds and mammals. Life history traits were also poor predictors of variation in reptilian heterophil and lymphocyte concentrations. Our results provide insight into differences in immune protection in birds and mammals relative to that in reptiles through a comparative lens. The shape of scaling relationships differs, which should be considered when modeling disease dynamics among these groups.


Asunto(s)
Evolución Biológica , Reptiles , Animales , Reptiles/fisiología , Aves/fisiología , Mamíferos/fisiología , Leucocitos
11.
Am Nat ; 200(5): 662-674, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36260844

RESUMEN

AbstractDuring range expansions, organisms can use epigenetic mechanisms to adjust to conditions in novel areas by altering gene expression and enabling phenotypic plasticity. Here, we predicted that the number of CpG sites within the genome, one form of epigenetic potential, would be important for successful range expansions because DNA methylation can modulate gene expression and, consequently, plasticity. We asked how the number of CpG sites and DNA methylation varied across five locations in the ∼70-year-old Kenyan house sparrow (Passer domesticus) range expansion. We found that the number of CpG sites was highest toward the vanguard of the invasion and decreased toward the range core. Analysis suggests that this pattern may have been driven by selection, favoring birds with more CpG sites at the range edge. However, we cannot rule out other processes, including nonrandom gene flow. Additionally, DNA methylation did not change across the range expansion, nor was it more variable. We hypothesize that as new areas are colonized, epigenetic potential may be selectively advantageous early but eventually be replaced by less plastic and perhaps genetically canalized traits as populations adapt to local conditions. Although further work is needed on epigenetic potential, this form (CpG number) appears to be a promising mechanism to investigate as a driver of expansions via capacitated phenotypic plasticity in other natural and anthropogenic range expansions.


Asunto(s)
Gorriones , Animales , Gorriones/genética , Metilación de ADN , Kenia , Epigénesis Genética , Plásticos
12.
J Exp Biol ; 225(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36017760
13.
J Exp Zool A Ecol Integr Physiol ; 337(5): 576-582, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286769

RESUMEN

Body size affects many traits, but often in allometric, or disproportionate ways. For example, large avian and mammalian species circulate far more of some immune cells than expected for their size based on simple geometric principles. To date, such hypermetric immune scaling has mostly been described in zoo-dwelling individuals, so it remains obscure whether immune hyper-allometries have any natural relevance. Here, we asked whether granulocyte and lymphocyte allometries in wild birds differ from those described in captive species. Our previous allometric studies of avian immune cell concentrations were performed on animals kept for their lifetimes in captivity where conditions are benign and fairly consistent. In natural conditions, infection, stress, nutrition, climate, and myriad other forces could alter immune traits and hence mask any interspecific scaling relationships between immune cells and body size. Counter to this expectation, we found no evidence that immune cell allometries differed between captive and wild species, although we had to rely on cell proportion data, as insufficient concentration data were available for wild species. Our results indicate that even in variable and challenging natural contexts, immune allometries endure and might affect disease ecology and evolution.


Asunto(s)
Aves , Mamíferos , Animales , Tamaño Corporal , Clima , Leucocitos
14.
Trends Endocrinol Metab ; 33(1): 8-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34750063

RESUMEN

Information theory has been applied productively across biology, but it has been used minimally in endocrinology. Here, we advocate for the integration of information theory into stress endocrinology. Presently, the majority of models of stress center on the regulation of hormone concentrations, even though what interests most endocrinologists and matters in terms of individual health and evolutionary fitness is the information content of hormones. In neuroscience, the free energy principle, a concept offered to explain how the brain infers current and future states of the environment, could be a guide for resolving how information is instantiated in hormones such as the glucocorticoids. Here, we offer several ideas and promising options for research addressing how hormones encode and cells respond to information in glucocorticoids.


Asunto(s)
Glucocorticoides , Teoría de la Información , Animales , Evolución Biológica , Sistema Endocrino/fisiología , Humanos , Vertebrados
15.
Horm Behav ; 135: 105038, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280702

RESUMEN

The hypothalamic-pituitary-adrenal (HPA) axis and its end products, the glucocorticoids, are critical to responding appropriately to stressors. Subsequently, many studies have sought relationships between glucocorticoids and measures of health or fitness, but such relationships are at best highly context dependent. Recently, some endocrinologists have started to suggest that a focus on HPA flexibility, the ability of an individual to mount appropriate responses to different stressors, could be useful. Here, we tested the hypothesis that expression of FKBP5, a cochaperone in the glucocorticoid receptor complex, is a simple and reliable proxy of HPA flexibility in a wild songbird, the house sparrow (Passer domesticus). We quantified HPA flexibility in a novel way, using guidance from research on heart rhythm regulation. As predicted, we found that adult sparrows with low stress-induced FKBP5 expression in the hypothalamus exhibited high HPA flexibility. Moreover, low FKBP5 expression was associated with greater exploratory disposition and were better at maintaining body mass under stressful conditions. Altogether, these results suggest that FKBP5 may be important in the regulation of HPA flexibility, potentially affecting how individuals cope with natural and anthropogenic adversity.


Asunto(s)
Gorriones , Animales , Corticosterona , Femenino , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisario , Masculino , Sistema Hipófiso-Suprarrenal
16.
J Exp Biol ; 224(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34104965

RESUMEN

Powered flight has evolved several times in vertebrates and constrains morphology and physiology in ways that likely have shaped how organisms cope with infections. Some of these constraints probably have impacts on aspects of immunology, such that larger fliers might prioritize risk reduction and safety. Addressing how the evolution of flight may have driven relationships between body size and immunity could be particularly informative for understanding the propensity of some taxa to harbor many virulent and sometimes zoonotic pathogens without showing clinical disease. Here, we used a comparative framework to quantify scaling relationships between body mass and the proportions of two types of white blood cells - lymphocytes and granulocytes (neutrophils/heterophils) - across 63 bat species, 400 bird species and 251 non-volant mammal species. By using phylogenetically informed statistical models on field-collected data from wild Neotropical bats and from captive bats, non-volant mammals and birds, we show that lymphocyte and neutrophil proportions do not vary systematically with body mass among bats. In contrast, larger birds and non-volant mammals have disproportionately higher granulocyte proportions than expected for their body size. Our inability to distinguish bat lymphocyte scaling from birds and bat granulocyte scaling from all other taxa suggests there may be other ecological explanations (i.e. not flight related) for the cell proportion scaling patterns. Future comparative studies of wild bats, birds and non-volant mammals of similar body mass should aim to further differentiate evolutionary effects and other aspects of life history on immune defense and its role in the tolerance of (zoonotic) infections.


Asunto(s)
Quirópteros , Animales , Aves , Tamaño Corporal , Vuelo Animal , Mamíferos , Vertebrados
17.
Conserv Physiol ; 9(1): coab009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859825

RESUMEN

Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions.

18.
Evolution ; 75(5): 1003-1010, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33755201

RESUMEN

Endocrine systems act as key intermediaries between organisms and their environments. This interaction leads to high variability in hormone levels, but we know little about the ecological factors that influence this variation within and across major vertebrate groups. We study this topic by assessing how various social and environmental dynamics influence testosterone levels across the entire vertebrate tree of life. Our analyses show that breeding season length and mating system are the strongest predictors of average testosterone concentrations, whereas breeding season length, environmental temperature, and variability in precipitation are the strongest predictors of within-population variation in testosterone. Principles from small-scale comparative studies that stress the importance of mating opportunity and competition on the evolution of species differences in testosterone levels, therefore, likely apply to the entire vertebrate lineage. Meanwhile, climatic factors associated with rainfall and ambient temperature appear to influence variability in plasma testosterone, within a given species. These results, therefore, reveal how unique suites of ecological factors differentially explain scales of variation in circulating testosterone across mammals, birds, reptiles, amphibians, and fishes.


Asunto(s)
Rasgos de la Historia de Vida , Testosterona/sangre , Vertebrados/fisiología , Animales , Ecosistema , Lluvia , Conducta Sexual Animal , Temperatura
19.
Proc Biol Sci ; 288(1947): 20210253, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33757351

RESUMEN

Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization. By modelling WNV exposure among sentinel chickens in Florida, we found strong support for a nonlinear relationship between ALAN and WNV exposure risk in chickens with peak WNV risk occurring at low ALAN levels. Although our goal was not to discern how ALAN affected WNV relative to other factors, effects of ALAN on WNV exposure were stronger than other known drivers of risk (i.e. impervious surface, human population density). Ambient temperature in the month prior to sampling, but no other considered variables, strongly influenced WNV risk. These results indicate that ALAN may contribute to spatio-temporal changes in WNV risk, justifying future investigations of ALAN on other vector-borne parasites.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Pollos , Contaminación Ambiental , Florida/epidemiología , Humanos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
20.
J Exp Biol ; 224(Pt 6)2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33775934

RESUMEN

Epigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows (Passer domesticus) than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (TLR4), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites. Here, we compared TLR4 gene expression from whole blood, liver and spleen in house sparrows with different EP, first challenging some birds with lipopolysaccharide (LPS), to increase gene expression by simulating a natural infection. We expected that high EP would predict high inducibility and reversibility of TLR4 expression in the blood of birds treated with LPS, but we did not make directional predictions regarding organs, as we could not repeatedly sample these tissues. We found that EP was predictive of TLR4 expression in all tissues. Birds with high EP expressed more TLR4 in the blood than individuals with low EP, regardless of treatment with LPS. Only females with high EP exhibited reversibility in gene expression. Further, the effect of EP varied between sexes and among tissues. Together, these data support EP as one regulator of TLR4 expression.


Asunto(s)
Gorriones , Animales , Epigénesis Genética , Femenino , Expresión Génica , Humanos , Lipopolisacáridos/farmacología , Gorriones/genética , Bazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA