RESUMEN
BACKGROUND: Previous studies identified factors influencing regulatory approval to introduction timelines for individual vaccines. However, introduction and uptake timelines have not been comprehensively assessed across the portfolio of Gavi-supported vaccines. METHODS: We analysed median times between introduction milestones from vaccine licensure to country introduction and uptake across six vaccine-preventable diseases (VPDs), three delivery platforms and 69 Gavi-supported countries. Data were gathered from public, partner and manufacturer records. VPDs and prequalified vaccines analysed included Haemophilus influenzae type b (DTwP-HepB-Hib, pentavalent), pneumococcal disease (pneumococcal conjugate vaccine, PCV), rotavirus diarrhoea (rotavirus vaccine, RVV), cervical cancer (human papillomavirus vaccine, HPV), polio (inactivated polio vaccine, IPV) and meningococcal meningitis (meningococcal group A conjugate vaccine, MenA). RESULTS: Median time from first vaccine licensure to first Gavi-supported country introduction across VPDs at a 'global level' (Gavi-supported countries) was 5.4 years. Once licensed, MenA vaccines reached first introduction fastest (campaign=0.6 years; routine immunisation (RI)=1.7 years). Most introductions were delayed. Country uptake following first introduction was accelerated for more recently Gavi-supported RI vaccines compared with older ones. CONCLUSION: Factors accelerating timelines across delivery platforms included rapid product prequalifications by WHO, strong initial recommendations by the WHO Strategic Advisory Group of Experts (SAGE) on Immunization, achieving target product profiles on first vaccine licensure within a VPD and completing several VPD milestones at a global level prior to licensure. Milestones required for introduction in Gavi-supported countries should start prior or in parallel to licensure to accelerate uptake of vaccines delivered through diverse delivery platforms.
Asunto(s)
Vacunas contra Rotavirus , Humanos , VacunaciónRESUMEN
An effective HIV vaccine will be essential for the control of the HIV pandemic. This study evaluated the potential global market size and value of a hypothetical HIV vaccine and considered clade diversity, disease burden, partial prevention of acquisition, impact of a reduction in viral load resulting in a decrease in transmission and delay to treatment, health care system differences regarding access, and HIV screening and vaccination, across all public and private markets. Vaccine product profiles varied from a vaccine that would have no effect on preventing infection to a vaccine that would effectively prevent infection and reduce viral load. High disease burden countries (HDBC; HIV prevalence > or = 1%) were assumed to routinely vaccinate pre-sexually active adolescents (10 years old), whereas low disease burden countries (LDBC; HIV prevalence rate <1%) were assumed to routinely vaccinate higher risk populations only. At steady state, routine vaccination demand for vaccines that would prevent infection only was 22-61 million annual doses with a potential market value of $210 million to $2.7 billion, depending on the vaccine product profile. If one-time catch-up campaigns were included (11-14 years old for HDBC and higher risk groups for LDBC), the additional cumulative approximately 70-237 million doses were needed over a 10-year period with a potential market value of approximately $695 million to $13.4 billion, depending on the vaccine product profile. Market size and value varied across market segments with the majority of the value in high income countries and the majority of the demand in low income countries. However, the value of the potential market in low income countries is still significant with up to $550 million annually for routine vaccination only and up to $1.7 billion for a one-time only catch-up campaign in 11-14 years old. In the most detail to date, this study evaluated market size and value of a potential multi-clade HIV vaccine, accounting for differences in disease burden, product profile and health care complexities. These findings provide donors and suppliers highly credible new data to consider in their continued efforts to develop an HIV-1 vaccine to address the worldwide disease burden.