Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 4: 4753, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24786311

RESUMEN

Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed.

2.
ACS Nano ; 7(9): 8147-57, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24001023

RESUMEN

Hummers method is commonly used for the fabrication of graphene oxide (GO) from graphite particles. The oxidation process also leads to the cutting of graphene sheets into small pieces. From a thermodynamic perspective, it seems improbable that the aggressive, somewhat random oxidative cutting process could directly result in graphene nanosheets without destroying the intrinsic π-conjugated structures and the associated exotic properties of graphene. In Hummers method, both KMnO4 and NO2(+) (nitronium ions) in concentrated H2SO4 solutions act as oxidants via different oxidation mechanisms. From both experimental observations and theoretical calculations, it appears that KMnO4 plays a major role in the observed oxidative cutting and unzipping processes. We find that KMnO4 also limits nitronium oxidative etching of graphene basal planes, therefore slowing down graphene fracturing processes for nanosheet fabrication. By intentionally excluding KMnO4 and exploiting pure nitronium ion oxidation, aided by the unique thermal and kinetic effects induced by microwave heating, we find that graphite particles can be converted into graphene nanosheets with their π-conjugated aromatic structures and properties largely retained. Without the need of any postreduction processes to remove the high concentration of oxygenated groups that results from Hummers GO formation, the graphene nanosheets as-fabricated exhibit strong absorption, which is nearly wavelength-independent in the visible and near-infrared (NIR) regions, an optical property typical for intrinsic graphene sheets. For the first time, we demonstrate that strong photoacoustic signals can be generated from these graphene nanosheets with NIR excitation. The photo-to-acoustic conversion is weakly dependent on the wavelength of the NIR excitation, which is different from all other NIR photoacoustic contrast agents previously reported.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Grafito/síntesis química , Membranas Artificiales , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagen de Elasticidad/instrumentación , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Rayos Infrarrojos , Ensayo de Materiales , Nanopartículas/ultraestructura , Tamaño de la Partícula , Fantasmas de Imagen , Técnicas Fotoacústicas/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
J Am Chem Soc ; 135(9): 3494-501, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23391134

RESUMEN

Manganese oxides occur naturally as minerals in at least 30 different crystal structures, providing a rigorous test system to explore the significance of atomic positions on the catalytic efficiency of water oxidation. In this study, we chose to systematically compare eight synthetic oxide structures containing Mn(III) and Mn(IV) only, with particular emphasis on the five known structural polymorphs of MnO2. We have adapted literature synthesis methods to obtain pure polymorphs and validated their homogeneity and crystallinity by powder X-ray diffraction and both transmission and scanning electron microscopies. Measurement of water oxidation rate by oxygen evolution in aqueous solution was conducted with dispersed nanoparticulate manganese oxides and a standard ruthenium dye photo-oxidant system. No Ru was absorbed on the catalyst surface as observed by XPS and EDX. The post reaction atomic structure was completely preserved with no amorphization, as observed by HRTEM. Catalytic activities, normalized to surface area (BET), decrease in the series Mn2O3 > Mn3O4 ≫ λ-MnO2, where the latter is derived from spinel LiMn2O4 following partial Li(+) removal. No catalytic activity is observed from LiMn2O4 and four of the MnO2 polymorphs, in contrast to some literature reports with polydispersed manganese oxides and electro-deposited films. Catalytic activity within the eight examined Mn oxides was found exclusively for (distorted) cubic phases, Mn2O3 (bixbyite), Mn3O4 (hausmannite), and λ-MnO2 (spinel), all containing Mn(III) possessing longer Mn-O bonds between edge-sharing MnO6 octahedra. Electronically degenerate Mn(III) has antibonding electronic configuration e(g)(1) which imparts lattice distortions due to the Jahn-Teller effect that are hypothesized to contribute to structural flexibility important for catalytic turnover in water oxidation at the surface.


Asunto(s)
Compuestos de Manganeso/química , Óxidos/química , Polímeros/química , Agua/química , Catálisis , Cristalización , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Difracción de Polvo
4.
J Am Chem Soc ; 134(13): 5850-6, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22385480

RESUMEN

Currently the preferred method for large-scale production of solution-processable graphene is via a nonconductive graphene oxide (GO) pathway, which uncontrollably cuts sheets into small pieces and/or introduces nanometer-sized holes in the basal plane. These structural changes significantly decrease some of graphene's remarkable electrical and mechanical properties. Here, we report an unprecedented fast and scalable approach to avoid these problems and directly produce large, highly conductive graphene sheets. This approach intentionally excludes KMnO(4) from Hummers' methods and exploits aromatic oxidation by nitronium ions combined with the unique properties of microwave heating. This combination promotes rapid and simultaneous oxidation of multiple non-neighboring carbon atoms across an entire graphene sheet, thereby producing only a minimum concentration of oxygen moieties sufficient to enable the separation of graphene sheets. Thus, separated graphene sheets, which are referred to as microwave-enabled low-oxygen graphene, are thermally stable and highly conductive without requiring further reduction. Even in the absence of polymeric or surfactant stabilizers, concentrated dispersions of graphene with clean and well-separated graphene sheets can be obtained in both aqueous and organic solvents. This rapid and scalable approach produces high-quality graphene sheets of low oxygen content, enabling a broad spectrum of applications via low-cost solution processing.

7.
ChemSusChem ; 3(4): 471-5, 2010 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-20209512

RESUMEN

By using a nondestructive, ultrasensitive, fluorescence kinetic technique, we measure in situ the photochemical energy conversion efficiency and electron transfer kinetics on the acceptor side of histidine-tagged photosystem II core complexes tethered to gold surfaces. Atomic force microscopy images coupled with Rutherford backscattering spectroscopy measurements further allow us to assess the quality, number of layers, and surface density of the reaction center films. Based on these measurements, we calculate that the theoretical photoelectronic current density available for an ideal monolayer of core complexes is 43 microA cm(-2) at a photon flux density of 2000 micromol quanta m(-2) s(-1) between 365 and 750 nm. While this current density is approximately two orders of magnitude lower than the best organic photovoltaic cells (for an equivalent area), it provides an indication for future improvement strategies. The efficiency could be improved by increasing the optical cross section, by tuning the electron transfer physics between the core complexes and the metal surface, and by developing a multilayer structure, thereby making biomimetic photoelectron devices for hydrogen generation and chemical sensing more viable.


Asunto(s)
Oro/química , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/química , Cianobacterias/enzimología , Transporte de Electrón , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Cinética , Complejo de Proteína del Fotosistema II/metabolismo , Espectrometría de Fluorescencia , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA