Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 331, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107572

RESUMEN

The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.


Asunto(s)
Apoptosis , Aterosclerosis , Células Espumosas , Canales Iónicos , Macrófagos , Fagocitosis , Animales , Canales Iónicos/metabolismo , Canales Iónicos/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Ratones , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Tiofenos/farmacología , Masculino , Especies Reactivas de Oxígeno/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Mitocondrias/metabolismo , Pirazinas , Tiadiazoles
2.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979218

RESUMEN

Background: Carotid atherosclerosis is a multifaceted disease orchestrated by a myriad of cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are lipid bilayer membrane-enclosed cell-derived nanoparticles that represent a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into plaque and marginal zones (n= 29 patients, paired plaque and marginal zone; symptomatic n=16, asymptomatic n=13), with further density gradient ultracentrifugation for proteomic analysis. EV cargoes were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with publicly available bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Human carotid plaques contained greater quantities of EVs than adjacent marginal zones. EV-miRNA and protein content was different in diseased plaque versus adjacent marginal zones, with differential functions in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Furthermore, EV signatures from SMCs and immune cells were most enriched in the marginal and plaque zones, respectively. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication strategies that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated a strong endothelial signature with potential roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was corroborated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV-vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed processes mediated by EVs creates new avenues for novel therapeutics in atherosclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA