Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Monit Comput ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512360

RESUMEN

Technologies for monitoring organ function are rapidly advancing, aiding physicians in the care of patients in both operating rooms (ORs) and intensive care units (ICUs). Some of these emerging, minimally or non-invasive technologies focus on monitoring brain function and ensuring the integrity of its physiology. Generally, the central nervous system is the least monitored system compared to others, such as the respiratory, cardiovascular, and renal systems, even though it is a primary target in most therapeutic strategies. Frequently, the effects of sedatives, hypnotics, and analgesics are entirely unpredictable, especially in critically ill patients with multiple organ failure. This unpredictability exposes them to the risks of inadequate or excessive sedation/hypnosis, potentially leading to complications and long-term negative outcomes. The International PRactice On TEChnology neuro-moniToring group (I-PROTECT), comprised of experts from various fields of clinical neuromonitoring, presents this document with the aim of reviewing and standardizing the primary non-invasive tools for brain monitoring in anesthesia and intensive care practices. The focus is particularly on standardizing the nomenclature of different parameters generated by these tools. The document addresses processed electroencephalography, continuous/quantitative electroencephalography, brain oxygenation through near-infrared spectroscopy, transcranial Doppler, and automated pupillometry. The clinical utility of the key parameters available in each of these tools is summarized and explained. This comprehensive review was conducted by a panel of experts who deliberated on the included topics until a consensus was reached. Images and tables are utilized to clarify and enhance the understanding of the clinical significance of non-invasive neuromonitoring devices within these medical settings.

2.
J Clin Monit Comput ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310592

RESUMEN

Current guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. Single center, observational study including patients with acute brain injury (ABI) admitted to the intensive care unit undergoing multimodal neuromonitoring and requiring titration of PaCO2 values to mild hypocapnia as tier 2 for the management of intracranial hypertension. Twenty-five patients were included in this study (40% female), median age 64.7 years (Interquartile Range, IQR = 45.9-73.2). Median Glasgow Coma Scale was 6 (IQR = 3-11). After mild hyperventilation, PaCO2 values decreased (from 42 (39-44) to 34 (32-34) mmHg, p < 0.0001), ICP and PRx significantly decreased (from 25.4 (24.1-26.4) to 17.5 (16-21.2) mmHg, p < 0.0001, and from 0.32 (0.1-0.52) to 0.12 (-0.03-0.23), p < 0.0001). rSO2 was statistically but not clinically significantly reduced (from 60% (56-64) to 59% (54-61), p < 0.0001), but the arterial component of rSO2 (ΔO2Hbi, changes in concentration of oxygenated hemoglobin of the total rSO2) decreased from 3.83 (3-6.2) µM.cm to 1.6 (0.5-3.1) µM.cm, p = 0.0001. Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.

3.
J Clin Monit Comput ; 38(1): 165-175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37453007

RESUMEN

Patients with acute brain injury (ABI) often require the application of positive end-expiratory pressure (PEEP) to optimize mechanical ventilation and systemic oxygenation. However, the effect of PEEP on cerebral function and metabolism is unclear. The primary aim of this study was to evaluate the effects of PEEP augmentation test (from 5 to 15 cmH2O) on brain oxygenation, systemic oxygen cascade and metabolism in ABI patients. Secondary aims include to determine whether changes in regional cerebral oxygenation are reflected by changes in oxygenation cascade and metabolism, and to assess the correlation between brain oxygenation and mechanical ventilation settings. Single center, pilot cross-sectional observational study in an Academic Hospital. Inclusion criteria were: adult (> 18 y/o) patients with ABI and stable intracranial pressure, available gas exchange and indirect calorimetry (IC) monitoring. Cerebral oxygenation was monitored with near-infrared spectroscopy (NIRS) and different derived parameters were collected: variation (Δ) in oxy (O2)-hemoglobin (Hb) (ΔO2Hbi), deoxy-Hb(ΔHHbi), total-Hb(ΔcHbi), and total regional oxygenation (ΔrSO2). Oxygen cascade and metabolism were monitored with arterial/venous blood gas analysis [arterial partial pressure of oxygen (PaO2), arterial saturation of oxygen (SaO2), oxygen delivery (DO2), and lactate], and IC [energy expenditure (REE), respiratory quotient (RQ), oxygen consumption (VO2), and carbon dioxide production (VCO2)]. Data were measured at PEEP 5 cmH2O and 15 cmH2O and expressed as delta (Δ) values. Ten patients with ABI [median age 70 (IQR 62-75) years, 6 (60%) were male, median Glasgow Coma Scale at ICU admission 5.5 (IQR 3-8)] were included. PEEP augmentation from 5 to 15 cmH2O did not affect cerebral oxygenation, systemic oxygen cascade parameters, and metabolism. The arterial component of cerebral oxygenation was significantly correlated with DO2 (ΔO2HBi, rho = 0.717, p = 0.037). ΔrSO2 (rho = 0.727, p = 0.032), ΔcHbi (rho = 0.797, p = 0.013), and ΔHHBi (rho = 0.816, p = 0.009) were significantly correlated with SaO2, but not ΔO2Hbi. ΔrSO2 was significantly correlated with VCO2 (rho = 0.681, p = 0.049). No correlation between brain oxygenation and ventilatory parameters was found. PEEP augmentation test did not affect cerebral and systemic oxygenation or metabolism. Changes in cerebral oxygenation significantly correlated with DO2, SaO2, and VCO2. Cerebral oxygen monitoring could be considered for individualization of mechanical ventilation setting in ABI patients without high or instable intracranial pressure.


Asunto(s)
Oxígeno , Respiración con Presión Positiva , Adulto , Humanos , Masculino , Anciano , Femenino , Estudios Transversales , Oxígeno/metabolismo , Respiración con Presión Positiva/métodos , Pulmón/metabolismo , Encéfalo/metabolismo , Hemoglobinas
4.
J Clin Monit Comput ; 37(4): 943-949, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37043157

RESUMEN

Over the past few years, the use of non-invasive neuromonitoring in non-brain injured patients has increased, as a result of the recognition that many of these patients are at risk of brain injury in a wide number of clinical scenarios and therefore may benefit from its application which allows interventions to prevent injury and improve outcome. Among these, are post cardiac arrest syndrome, sepsis, liver failure, acute respiratory failure, and the perioperative settings where in the absence of a primary brain injury, certain groups of patients have high risk of neurological complications. While there are many neuromonitoring modalities utilized in brain injured patients, the majority of those are either invasive such as intracranial pressure monitoring, require special skill such as transcranial Doppler ultrasonography, or intermittent such as pupillometry and therefore unable to provide continuous monitoring. Cerebral oximetry using Near infrared Spectroscopy, is a simple non invasive continuous measure of cerebral oxygenation that has been shown to be useful in preventing cerebral hypoxemia both within the intensive care unit and the perioperative settings. At present, current recommendations for standard monitoring during anesthesia or in the general intensive care concentrate mainly on hemodynamic and respiratory monitoring without specific indications regarding the brain, and in particular, brain oximetry. The aim of this manuscript is to provide an up-to-date overview of the pathophysiology and applications of cerebral oxygenation in non brain injured patients as part of non-invasive multimodal neuromonitoring in the early identification and treatment of neurological complications in this population.


Asunto(s)
Lesiones Encefálicas , Enfermedades del Sistema Nervioso , Humanos , Circulación Cerebrovascular/fisiología , Oximetría , Monitoreo Fisiológico/métodos , Encéfalo
5.
Front Physiol ; 14: 1113386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846344

RESUMEN

Introduction: Potential detrimental effects of hyperoxemia on outcomes have been reported in critically ill patients. Little evidence exists on the effects of hyperoxygenation and hyperoxemia on cerebral physiology. The primary aim of this study is to assess the effect of hyperoxygenation and hyperoxemia on cerebral autoregulation in acute brain injured patients. We further evaluated potential links between hyperoxemia, cerebral oxygenation and intracranial pressure (ICP). Methods: This is a single center, observational, prospective study. Acute brain injured patients [traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage (ICH)] undergoing multimodal brain monitoring through a software platform (ICM+) were included. Multimodal monitoring consisted of invasive ICP, arterial blood pressure (ABP) and near infrared spectrometry (NIRS). Derived parameters of ICP and ABP monitoring included the pressure reactivity index (PRx) to assess cerebral autoregulation. ICP, PRx, and NIRS-derived parameters (cerebral regional saturation of oxygen, changes in concentration of regional oxy- and deoxy-hemoglobin), were evaluated at baseline and after 10 min of hyperoxygenation with a fraction of inspired oxygen (FiO2) of 100% using repeated measures t-test or paired Wilcoxon signed-rank test. Continuous variables are reported as median (interquartile range). Results: Twenty-five patients were included. The median age was 64.7 years (45.9-73.2), and 60% were male. Thirteen patients (52%) were admitted for TBI, 7 (28%) for SAH, and 5 (20%) patients for ICH. The median value of systemic oxygenation (partial pressure of oxygen-PaO2) significantly increased after FiO2 test, from 97 (90-101) mm Hg to 197 (189-202) mm Hg, p < 0.0001. After FiO2 test, no changes were observed in PRx values (from 0.21 (0.10-0.43) to 0.22 (0.15-0.36), p = 0.68), nor in ICP values (from 13.42 (9.12-17.34) mm Hg to 13.34 (8.85-17.56) mm Hg, p = 0.90). All NIRS-derived parameters reacted positively to hyperoxygenation as expected. Changes in systemic oxygenation and the arterial component of cerebral oxygenation were significantly correlated (respectively ΔPaO2 and ΔO2Hbi; r = 0.49 (95% CI = 0.17-0.80). Conclusion: Short-term hyperoxygenation does not seem to critically affect cerebral autoregulation.

6.
Respir Care ; 68(4): 452-461, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36810363

RESUMEN

BACKGROUND: Physiotherapy may result in better functional outcomes, shorter duration of delirium, and more ventilator-free days. The effects of physiotherapy on different subpopulations of mechanically ventilated patients on respiratory and cerebral function are still unclear. We evaluated the effect of physiotherapy on systemic gas exchange and hemodynamics as well as on cerebral oxygenation and hemodynamics in mechanically ventilated subjects with and without COVID-19 pneumonia. METHODS: This was an observational study in critically ill subjects with and without COVID-19 who underwent protocolized physiotherapy (including respiratory and rehabilitation physiotherapy) and neuromonitoring of cerebral oxygenation and hemodynamics. PaO2 /FIO2 , PaCO2 , hemodynamics (mean arterial pressure [MAP], mm Hg; heart rate, beats/min), and cerebral physiologic parameters (noninvasive intracranial pressure, cerebral perfusion pressure using transcranial Doppler, and cerebral oxygenation using near-infrared spectroscopy) were assessed before (T0) and immediately after physiotherapy (T1). RESULTS: Thirty-one subjects were included (16 with COVID-19 and 15 without COVID-19). Physiotherapy improved PaO2 /FIO2 in the overall population (T1 = 185 [108-259] mm Hg vs T0 = 160 [97-231] mm Hg, P = .02) and in the subjects with COVID-19 (T1 = 119 [89-161] mm Hg vs T0 = 110 [81-154] mm Hg, P = .02) and decreased the PaCO2 in the COVID-19 group only (T1 = 40 [38-44] mm Hg vs T0 = 43 [38-47] mm Hg, P = .03). Physiotherapy did not affect cerebral hemodynamics, whereas increased the arterial oxygen part of hemoglobin both in the overall population (T1 = 3.1% [-1.3 to 4.9] vs T0 = 1.1% [-1.8 to 2.6], P = .007) and in the non-COVID-19 group (T1 = 3.7% [0.5-6.3] vs T0 = 0% [-2.2 to 2.8], P = .02). Heart rate was higher after physiotherapy in the overall population (T1 = 87 [75-96] beats/min vs T0 = 78 [72-92] beats/min, P = .044) and in the COVID-19 group (T1 = 87 [81-98] beats/min vs T0 = 77 [72-91] beats/min, P = .01), whereas MAP increased in the COVID-19 group only (T1 = 87 [82-83] vs T0 = 83 [76-89], P = .030). CONCLUSIONS: Protocolized physiotherapy improved gas exchange in subjects with COVID-19, whereas it improved cerebral oxygenation in non-COVID-19 subjects.


Asunto(s)
COVID-19 , Respiración Artificial , Humanos , Respiración Artificial/métodos , COVID-19/terapia , Pulmón , Hemodinámica , Modalidades de Fisioterapia
7.
Neurocrit Care ; 38(2): 296-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35896766

RESUMEN

BACKGROUND: The use of processed electroencephalography (pEEG) for depth of sedation (DOS) monitoring is increasing in anesthesia; however, how to use of this type of monitoring for critical care adult patients within the intensive care unit (ICU) remains unclear. METHODS: A multidisciplinary panel of international experts consisting of 21 clinicians involved in monitoring DOS in ICU patients was carefully selected on the basis of their expertise in neurocritical care and neuroanesthesiology. Panelists were assigned four domains (techniques for electroencephalography [EEG] monitoring, patient selection, use of the EEG monitors, competency, and training the principles of pEEG monitoring) from which a list of questions and statements was created to be addressed. A Delphi method based on iterative approach was used to produce the final statements. Statements were classified as highly appropriate or highly inappropriate (median rating ≥ 8), appropriate (median rating ≥ 7 but < 8), or uncertain (median rating < 7) and with a strong disagreement index (DI) (DI < 0.5) or weak DI (DI ≥ 0.5 but < 1) consensus. RESULTS: According to the statements evaluated by the panel, frontal pEEG (which includes a continuous colored density spectrogram) has been considered adequate to monitor the level of sedation (strong consensus), and it is recommended by the panel that all sedated patients (paralyzed or nonparalyzed) unfit for clinical evaluation would benefit from DOS monitoring (strong consensus) after a specific training program has been performed by the ICU staff. To cover the gap between knowledge/rational and routine application, some barriers must be broken, including lack of knowledge, validation for prolonged sedation, standardization between monitors based on different EEG analysis algorithms, and economic issues. CONCLUSIONS: Evidence on using DOS monitors in ICU is still scarce, and further research is required to better define the benefits of using pEEG. This consensus highlights that some critically ill patients may benefit from this type of neuromonitoring.


Asunto(s)
Anestesia , Enfermedad Crítica , Humanos , Adulto , Consenso , Cuidados Críticos/métodos , Electroencefalografía/métodos
8.
Life (Basel) ; 12(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36556396

RESUMEN

Excessive sedation is associated with poor outcome in critically ill acute respiratory distress syndrome (ARDS) patients. Whether this prognostic effect varies among ARDS patients with and without COVID-19 has yet to be determined. We compared the prognostic value of excessive sedation­in terms of delirium, length of stay in intensive care unit (ICU-LOS) and ICU mortality­between COVID-19 and non-COVID-19 critically ill ARDS patients. This was a second analysis of prospectively collected data in four European academic centers pertaining to 101 adult critically ill ARDS patients with and without COVID-19 disease. Depth of sedation (DOS) and delirium were monitored through processed electroencephalogram (EEG) and the Confusion Assessment Method for ICU (CAM-ICU). Our main exposure was excessive sedation and how it relates to the presence of delirium, ICU-LOS and ICU mortality. The criterion for excessive sedation was met in 73 (72.3%) patients; of these, 15 (82.2%) and 58 (69.1%) were in non-COVID-19 and COVID-19 ARDS groups, respectively. The criteria of delirium were met in 44 patients (60.3%). Moreover, excessive sedation was present in 38 (86.4%) patients with delirium (p < 0.001). ICU death was ascertained in 41 out of 101 (41.0%) patients; of these, 37 (90.2%) had excessive sedation (p < 0.001). The distribution of ICU-LOS among excessive-sedated and non-sedated patients was 22 (16−27) vs. 14 (10.5−19.5) days (p < 0.001), respectively. In a multivariable framework, excessive sedation was independently associated with the development of delirium (p = 0.001), increased ICU mortality (p = 0.009) and longer ICU-LOS (p = 0.000), but only in COVID-19 ARDS patients. Independent of age and gender, excessive sedation might represent a risk factor for delirium in COVID-19 ARDS patients. Similarly, excessive sedation shows to be an independent predictor of ICU-LOS and ICU mortality. The use of continuous EEG-based depth of sedation (DOS) monitoring and delirium assessment in critically ill COVID-19 patients is warranted.

9.
Anesth Analg ; 135(6): 1304-1314, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36097147

RESUMEN

Regional cerebral oxygen saturation (rS o2 ) obtained from near-infrared spectroscopy (NIRS) provides valuable information during cardiac surgery. The rS o2 is calculated from the proportion of oxygenated to total hemoglobin in the cerebral vasculature. Root O3 cerebral oximetry (Masimo) allows for individual identification of changes in total (ΔcHbi), oxygenated (Δ o2 Hbi), and deoxygenated (ΔHHbi) hemoglobin spectral absorptions. Variations in these parameters from baseline help identify the underlying mechanisms of cerebral desaturation. This case series represents the first preliminary description of Δ o2 Hbi, ΔHHbi, and ΔcHbi variations in 10 cardiac surgical settings. Hemoglobin spectral absorption changes can be classified according to 3 distinct variations of cerebral desaturation. Reduced cerebral oxygen content or increased cerebral metabolism without major blood flow changes is reflected by decreased Δ o2 Hbi, unchanged ΔcHbi, and increased ΔHHbi Reduced cerebral arterial blood flow is suggested by decreased Δ o2 Hbi and ΔcHbi, with variable ΔHHbi. Finally, acute cerebral congestion may be suspected with increased ΔHHbi and ΔcHbi with unchanged Δ o2 Hbi. Cerebral desaturation can also result from mixed mechanisms reflected by variable combination of those 3 patterns. Normal cerebral saturation can occur, where reduced cerebral oxygen content such as anemia is balanced by a reduction in cerebral oxygen consumption such as during hypothermia. A summative algorithm using rS o2 , Δ o2 Hbi, ΔHHbi, and ΔcHbi is proposed. Further explorations involving more patients should be performed to establish the potential role and limitations of monitoring hemoglobin spectral absorption signals.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Oxihemoglobinas , Humanos , Oximetría/métodos , Circulación Cerebrovascular/fisiología , Oxígeno , Hemoglobinas/metabolismo
10.
Front Neurol ; 12: 674466, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220684

RESUMEN

Background: Coronavirus disease 2019 (COVID-19) patients are at high risk of neurological complications consequent to several factors including persistent hypotension. There is a paucity of data on the effects of therapeutic interventions designed to optimize systemic hemodynamics on cerebral autoregulation (CA) in this group of patients. Methods: Single-center, observational prospective study conducted at San Martino Policlinico Hospital, Genoa, Italy, from October 1 to December 15, 2020. Mechanically ventilated COVID-19 patients, who had at least one episode of hypotension and received a passive leg raising (PLR) test, were included. They were then treated with fluid challenge (FC) and/or norepinephrine (NE), according to patients' clinical conditions, at different moments. The primary outcome was to assess the early effects of PLR test and of FC and NE [when clinically indicated to maintain adequate mean arterial pressure (MAP)] on CA (CA index) measured by transcranial Doppler (TCD). Secondary outcomes were to evaluate the effects of PLR test, FC, and NE on systemic hemodynamic variables, cerebral oxygenation (rSo2), and non-invasive intracranial pressure (nICP). Results: Twenty-three patients were included and underwent PLR test. Of these, 22 patients received FC and 14 were treated with NE. The median age was 62 years (interquartile range = 57-68.5 years), and 78% were male. PLR test led to a low CA index [58% (44-76.3%)]. FC and NE administration resulted in a CA index of 90.8% (74.2-100%) and 100% (100-100%), respectively. After PLR test, nICP based on pulsatility index and nICP based on flow velocity diastolic formula was increased [18.6 (17.7-19.6) vs. 19.3 (18.2-19.8) mm Hg, p = 0.009, and 12.9 (8.5-18) vs. 15 (10.5-19.7) mm Hg, p = 0.001, respectively]. PLR test, FC, and NE resulted in a significant increase in MAP and rSo2. Conclusions: In mechanically ventilated severe COVID-19 patients, PLR test adversely affects CA. An individualized strategy aimed at assessing both the hemodynamic and cerebral needs is warranted in patients at high risk of neurological complications.

11.
Minerva Anestesiol ; 87(11): 1226-1238, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33938677

RESUMEN

A primary objective in intensive care and perioperative settings is to promote an adequate supply and delivery of oxygen to tissues and organs, particularly to the brain. Cerebral near infrared spectroscopy (NIRS) is a noninvasive, continuous monitoring technique, that can be used to assess cerebral oxygenation. Using NIRS to monitor cerebral oximetry is not new and has been in widespread use in neonates and cardiac surgery for decades. In addition, it has become common to see NIRS being used in adult and pediatric cardiac surgery, acute neurological diseases, neurosurgical procedures, vascular surgery, severe trauma and other acute medical diseases. Furthermore, recent evidence suggests a role for NIRS in the perioperative settings; detecting and preventing episodes of cerebral desaturation aiming to reduce the development of postoperative delirium. NIRS is not without its limitations; these include the risk of extra-cranial contamination, spatial limitations and skin blood flow/volume changes, as well being a measure of localized blood oxygenation underneath the sensor. However, NIRS is a noninvasive technique and can be used in those patients without indications or justification for invasive brain monitoring; non-neurosurgical procedures such as liver transplantation, major orthopedic surgery and critically illness where the brain is at risk. The aim of this manuscript was to discuss the physical principles of NIRS and to report the current evidence regarding its use in critically ill patients without primary non-anoxic brain injury.


Asunto(s)
Lesiones Encefálicas , Circulación Cerebrovascular , Adulto , Encéfalo , Niño , Enfermedad Crítica , Humanos , Recién Nacido , Oximetría , Oxígeno
12.
Crit Care ; 25(1): 111, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741052

RESUMEN

BACKGROUND: In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. METHODS: This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. RESULTS: Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57-69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51-54]% vs. 49 [47-50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56-71] to 82 [76-87] mmHg, p = 0.005) and rSO2 (from 53 [52-54]% to 60 [59-64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67-73] to 72 [67-73] mmHg, p = 0.015) and rSO2 (from 53 [51-56]% to 57 [55-59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75-79] to 64 [60-70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56-65]% vs. 56 [53-62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). CONCLUSIONS: Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).


Asunto(s)
COVID-19/terapia , Circulación Cerebrovascular , Oxígeno/sangre , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Anciano , COVID-19/complicaciones , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/virología , Resultado del Tratamiento
13.
Anesth Analg ; 132(1): 202-209, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31856005

RESUMEN

BACKGROUND: Patients with Stickler syndrome often require emergency surgery and are often anesthetized in nonspecialist units, typically for retinal detachment repair. Despite the occurrence of cleft palate and Pierre-Robin sequence, there is little published literature on airway complications. Our aim was to describe anesthetic practice and complications in a nonselected series of Stickler syndrome cases. To our knowledge, this is the largest such series in the published literature. METHODS: We retrospectively identified patients with genetically confirmed Stickler syndrome who had undergone general anesthesia in a major teaching hospital, seeking to identify factors that predicted patients who would require more than 1 attempt to correctly site an endotracheal tube (ETT) or supraglottic airway device (SAD). Patient demographics, associated factors, and anesthetic complications were collected. Descriptive statistical analysis and logistic regression modeling were performed. RESULTS: Five hundred and twoanesthetic events were analyzed. Three hundred ninety-five (92.7%) type 1 Stickler and 63 (96.9%) type 2 Stickler patients could be managed with a single attempt of passing an ETT or SAD. Advanced airway techniques were required on 4 occasions, and we report no major complications. On logistic regression, modeling receding mandible (P = .0004) and history of cleft palate (P = .0004) were significantly associated with the need for more than 1 attempt at airway manipulation. CONCLUSIONS: The majority of Stickler patients can be anesthetized safely with standard management. If patients have a receding mandible or history of cleft, an experienced anesthetist familiar with Stickler syndrome should manage the patient. We recommend that patients identified to have a difficult airway wear an alert bracelet.


Asunto(s)
Manejo de la Vía Aérea/métodos , Anestesia General/métodos , Artritis/epidemiología , Artritis/cirugía , Enfermedades del Tejido Conjuntivo/epidemiología , Enfermedades del Tejido Conjuntivo/cirugía , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/cirugía , Complicaciones Intraoperatorias/epidemiología , Complicaciones Intraoperatorias/prevención & control , Desprendimiento de Retina/epidemiología , Desprendimiento de Retina/cirugía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Fisura del Paladar/epidemiología , Fisura del Paladar/cirugía , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Síndrome de Pierre Robin/epidemiología , Síndrome de Pierre Robin/cirugía , Estudios Retrospectivos , Adulto Joven
14.
Front Neurol ; 12: 735469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987461

RESUMEN

Introduction: The role of near-infrared spectroscopy (NIRS) for the evaluation of cerebral haemodynamics is gaining increasing popularity because of its noninvasive nature. The aim of this study was to evaluate the role of the integral components of regional cerebral oxygenation (rSO2) measured by NIRS [i.e., arterial-oxyhemoglobin (O2Hbi) and venous-deoxyhemoglobin (HHbi)-components], as indirect surrogates of cerebral blood flow (CBF) in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19). We compared these findings to the gold standard technique for noninvasive CBF assessment, Transcranial Doppler (TCD). Methods: Mechanically ventilated patients with COVID-19 admitted to the Intensive Care Unit (ICU) of Policlinico San Martino Hospital, Genova, Italy, who underwent multimodal neuromonitoring (including NIRS and TCD), were included. rSO2 and its components [relative changes in O2Hbi, HHbi, and total haemoglobin (cHbi)] were compared with TCD (cerebral blood flow velocity, CBFV). Changes (Δ) in CBFV and rSO2, ΔO2Hbi, ΔHHbi, and ΔcHbi after systemic arterial blood pressure (MAP) modifications induced by different manoeuvres (e.g., rescue therapies and haemodynamic manipulation) were assessed using mixed-effect linear regression analysis and repeated measures correlation coefficients. All values were normalised as percentage changes from the baseline (Δ%). Results: One hundred and four measurements from 25 patients were included. Significant effects of Δ%MAP on Δ%CBF were observed after rescue manoeuvres for CBFV, ΔcHbi, and ΔO2Hbi. The highest correlation was found between ΔCBFV and ΔΔO2Hbi (R = 0.88, p < 0.0001), and the poorest between ΔCBFV and ΔΔHHbi (R = 0.34, p = 0.002). Conclusions: ΔO2Hbi had the highest accuracy to assess CBF changes, reflecting its role as the main component for vasomotor response after changes in MAP. The use of indexes derived from the different components of rSO2 can be useful for the bedside evaluation of cerebral haemodynamics in mechanically ventilated patients with COVID-19.

15.
BMJ Surg Interv Health Technol ; 1(1): e000012, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-35047776

RESUMEN

BACKGROUND: Chronic subdural hematoma (CSDH) is a common neurological condition; surgical evacuation is the mainstay of treatment for symptomatic patients. No clear evidence exists regarding the impact of timing of surgery on outcomes. We investigated factors influencing time to surgery and its impact on outcomes of interest. METHODS: Patients with CSDH who underwent burr-hole craniostomy were included. This is a subset of data from a prospective observational study conducted in the UK. Logistic mixed modelling was performed to examine the factors influencing time to surgery. The impact of time to surgery on discharge modified Rankin Scale (mRS), complications, recurrence, length of stay and survival was investigated with multivariable logistic regression analysis. RESULTS: 656 patients were included. Time to surgery ranged from 0 to 44 days (median 1, IQR 1-3). Older age, more favorable mRS on admission, high preoperative Glasgow Coma Scale score, use of antiplatelet medications, comorbidities and bilateral hematomas were associated with increased time to surgery. Time to surgery showed a significant positive association with length of stay; it was not associated with outcome, complication rate, reoperation rate, or survival on multivariable analysis. There was a trend for patients with time to surgery of ≥7 days to have lower odds of favorable outcome at discharge (p=0.061). CONCLUSIONS: This study provides evidence that time to surgery does not substantially impact on outcomes following CSDH. However, increasing time to surgery is associated with increasing length of stay. These results should not encourage delaying operations for patients when they are clinically indicated.

16.
J Clin Monit Comput ; 33(4): 615-625, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30328561

RESUMEN

Although the beach-chair position (BCP) is widely used during shoulder surgery, it has been reported to associate with a reduction in cerebral blood flow, oxygenation, and risk of brain ischaemia. We assessed cerebral haemodynamics using a multiparameter transcranial Doppler-derived approach in patients undergoing shoulder surgery. 23 anaesthetised patients (propofol (2 mg/kg)) without history of neurologic pathology undergoing elective shoulder surgery were included. Arterial blood pressure (ABP, monitored with a finger-cuff plethysmograph calibrated at the auditory meatus level) and cerebral blood flow velocity (FV, monitored in the middle cerebral artery) were recorded in supine and in BCP. All subjects underwent interscalene block ipsilateral to the side of FV measurement. We evaluated non-invasive intracranial pressure (nICP) and cerebral perfusion pressure (nCPP) calculated with a black-box mathematical model; critical closing pressure (CrCP); diastolic closing margin (DCM-pressure reserve available to avoid diastolic flow cessation); cerebral autoregulation index (Mxa); pulsatility index (PI). Significant changes occured for DCM [mean decrease of 6.43 mm Hg (p = 0.01)] and PI [mean increase of 0.11 (p = 0.05)]. ABP, FV, nICP, nCPP and CrCP showed a decreasing trend. Cerebral autoregulation was dysfunctional (Mxa > 0.3) and PI deviated from normal ranges (PI > 0.8) in both phases. ABP and nCPP values were low (< 60 mm Hg) in both phases. Changes between phases did not result in CrCP reaching diastolic ABP, therefore DCM did not reach critical values (≤ 0 mm Hg). BCP resulted in significant cerebral haemodynamic changes. If left untreated, reduction in cerebral blood flow may result in brain ischaemia and post-operative neurologic deficit.


Asunto(s)
Circulación Cerebrovascular , Monitoreo Fisiológico/métodos , Posicionamiento del Paciente/métodos , Hombro/cirugía , Sedestación , Ultrasonografía Doppler Transcraneal/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anestesia/métodos , Presión Arterial , Velocidad del Flujo Sanguíneo , Encéfalo/patología , Isquemia Encefálica/fisiopatología , Femenino , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo , Propofol/uso terapéutico , Riesgo , Ultrasonografía Doppler , Adulto Joven
17.
Acta Neurochir Suppl ; 126: 69-73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29492535

RESUMEN

BACKGROUND: Non-invasive measurement of intracranial pressure (ICP) can be invaluable in the management of critically ill patients. Invasive measurement of ICP remains the "gold standard" and should be performed when clinical indications are met, but it is invasive and brings some risks. In this project, we aim to validate the non-invasive ICP (nICP) assessment models based on arterious and venous transcranial Doppler ultrasonography (TCD) and optic nerve sheath diameter (ONSD). METHODS: We included brain injured patients requiring invasive ICP monitoring (intraparenchymal or intraventricular). We assessed the concordance between ICP measured non-invasively with arterious [flow velocity diastolic formula (ICPFVd) and pulsatility index (PI)], venous TCD (vPI) and ICP derived from ONSD (nICPONSD) compared to invasive ICP measurement. RESULTS: Linear regression showed a positive relationship between nICP and ICP for all the methods, except PIv. ICPONSD showed the strongest correlation with invasive ICP (r = 0.61) compared to the other methods (ICPFVd, r = 0.26, p value = 0.0015; PI, r = 0.19, p value = 0.02, vPI, r = 0.056, p value = 0.510). The ability to predict intracranial hypertension was highest for ICPONSD (AUC = 0.91; 95% CI, 0.85-0.97 at ICP > 20 mmHg), with a sensitivity and specificity of 85%, followed by ICPFVd (AUC = 0.67; 95% CI, 0.54-0.79). CONCLUSIONS: Our results demonstrate that among the non-invasive methods studied, ONSD showed the best accuracy in the detection of ICP.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Arterias Cerebrales/diagnóstico por imagen , Venas Cerebrales/diagnóstico por imagen , Hipertensión Intracraneal/diagnóstico por imagen , Monitoreo Fisiológico/métodos , Nervio Óptico/diagnóstico por imagen , Hemorragia Subaracnoidea/diagnóstico por imagen , Anciano , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Femenino , Humanos , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/fisiopatología , Presión Intracraneal , Modelos Lineales , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/fisiopatología , Ultrasonografía , Ultrasonografía Doppler Transcraneal
18.
Curr Opin Anaesthesiol ; 30(5): 527-533, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28719459

RESUMEN

PURPOSE OF REVIEW: Management of coagulation in neurosurgical procedures is challenging. In this contest, it is imperative to avoid further intracranial bleeding. Perioperative bleeding can be associated with a number of factors, including anticoagulant drugs and coagulation status but is also linked to the characteristic and the site of the intracranial disorder. The aim of this review will be to focus primarily on the new evidence regarding the management of coagulation in patients undergoing craniotomy for neurosurgical procedures. RECENT FINDINGS: Antihemostatic and anticoagulant drugs have shown to be associated with perioperative bleeding. On the other hand, an increased risk of venous thromboembolism and hypercoagulative state after elective and emergency neurosurgery, in particular after brain tumor surgery, has been described in several patients. To balance the risk between thrombosis and bleeding, it is important to be familiar with the perioperative changes in coagulation and with the recent management guidelines for anticoagulated patients undergoing neurosurgical procedures, in particular for those taking new direct anticoagulants. We have considered the current clinical trials and literature regarding both safety and efficacy of deep venous thrombosis prophylaxis in the neurosurgical population. These were mainly trials concerning both elective surgical and intensive care patients with a poor grade intracranial bleed or multiple traumas with an associated severe traumatic brain injury (TBI). SUMMARY: Coagulation management remains a major issue in patients undergoing neurosurgical procedures. However, in this field of research, literature quality is poor and further studies are necessary to identify the best strategies to minimize risks in this group of patients.


Asunto(s)
Coagulación Sanguínea , Procedimientos Neuroquirúrgicos , Animales , Anticoagulantes/uso terapéutico , Lesiones Traumáticas del Encéfalo/cirugía , Craneotomía , Humanos , Receptor PAR-1/fisiología , Tromboelastografía , Tromboembolia Venosa/prevención & control
19.
J Neurosurg Anesthesiol ; 29(3): 243-250, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26998650

RESUMEN

BACKGROUND: Prone positioning and positive end-expiratory pressure can improve pulmonary gas exchange and respiratory mechanics. However, they may be associated with the development of intracranial hypertension. Intracranial pressure (ICP) can be noninvasively estimated from the sonographic measurement of the optic nerve sheath diameter (ONSD) and from the transcranial Doppler analysis of the pulsatility (ICPPI) and the diastolic component (ICPFVd) of the velocity waveform. METHODS: The effect of the prone positioning and positive end-expiratory pressure on ONSD, ICPFVd, and ICPPI was assessed in a prospective study of 30 patients undergoing spine surgery. One-way repeated measures analysis of variance, fixed-effect multivariate regression models, and receiver operating characteristic analyses were used to analyze numerical data. RESULTS: The mean values of ONSD, ICPFVd, and ICPPI significantly increased after change from supine to prone position. Receiver operating characteristic analyses demonstrated that, among the noninvasive methods, the mean ONSD measure had the greatest area under the curve signifying it is the most effective in distinguishing a hypothetical change in ICP between supine and prone positioning (0.86±0.034 [0.79 to 0.92]). A cutoff of 0.43 cm was found to be a best separator of ONSD value between supine and prone with a specificity of 75.0 and a sensitivity of 86.7. CONCLUSIONS: Noninvasive ICP estimation may be useful in patients at risk of developing intracranial hypertension who require prone positioning.


Asunto(s)
Presión Intracraneal , Respiración con Presión Positiva , Posición Prona , Adulto , Anciano , Algoritmos , Femenino , Humanos , Hipertensión Intracraneal , Masculino , Persona de Mediana Edad , Monitoreo Intraoperatorio , Procedimientos Neuroquirúrgicos , Nervio Óptico/diagnóstico por imagen , Proyectos Piloto , Estudios Prospectivos , Columna Vertebral/cirugía
20.
J Thorac Dis ; 9(12): 5368-5381, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29312748

RESUMEN

Traumatic brain injury (TBI) is an important cause of morbidity and mortality worldwide. TBI patients frequently suffer from lung complications and acute respiratory distress syndrome (ARDS), which is associated with poor clinical outcomes. Moreover, the association between TBI and ARDS in trauma patients is well recognized. Mechanical ventilation of patients with a concomitance of acute brain injury and lung injury can present significant challenges. Frequently, guidelines recommending management strategies for patients with traumatic brain injuries come into conflict with what is now considered best ventilator practice. In this review, we will explore the strategies of the best practice in the ventilatory management of patients with ARDS and TBI, concentrating on those areas in which a conflict exists. We will discuss the use of ventilator strategies such as protective ventilation, high positive end expiratory pressure (PEEP), prone position, recruitment maneuvers (RMs), as well as techniques which at present are used for 'rescue' in ARDS (including extracorporeal membrane oxygenation) in patients with TBI. Furthermore, general principles of fluid, haemodynamic and hemoglobin management will be discussed. Currently, there are inadequate data addressing the safety or efficacy of ventilator strategies used in ARDS in adult patients with TBI. At present, choice of ventilator rescue strategies is best decided on a case-by-case basis in conjunction with local expertise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA