Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Biol Macromol ; 282(Pt 3): 136998, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39471923

RESUMEN

Although the production of carboxymethylcellulose from different raw materials is commercial, its preparation from agro-industrial residues has still been poorly explored in terms of performance, cost-effectiveness, and sustainability. Here, sugarcane bagasse was used as raw material for the carboxymethylcellulose (CMCb) synthesis within the biorefinery context. Sequential treatments were used for the removal of hemicellulose and lignin and the isolation of cellulose, whose conversion into CMCb was carried out through treatments with NaOH and monochloroacetic acid (MCA). The chemical modifications led to a CMCb with a substitution degree of 0.44, purity of 71.3 %, and 32 % crystallinity. Our residue-based CMCb was adequate for microorganism encapsulation, a high-value application, promoting viable conidia after 5 months of storage in equivalent conditions of high-purity, commercial CMC. Our findings show a route for the preparation of valuable polysaccharides from waste in future biorefineries, which, depending on their characteristics, can be applied in different processes. Here we use them for the encapsulation of a bioagent, although they can easily be used in other applications such as packaging and coating.

2.
Int J Biol Macromol ; 280(Pt 3): 135726, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293620

RESUMEN

In this study, gelatin/carboxylated cellulose nanocrystal (cCNC) bionanocomposite films were developed as an eco-friendly alternative to non-biodegradable flexible plastic packaging. Cellulose nanocrystals were modified by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation (cCNC) to strategically interact with amino groups present in the gelatin macromolecular backbone. Gelatin/cCNC bionanocomposite films (0.5-6.0 wt% cCNC) obtained by solution casting were transparent to visible light while displayed high UV-blocking properties. The chemical compatibility between gelatin and cCNC was deepened by electrostatic COO-/NH3+ interactions, as detected by FTIR spectroscopy and morphologically indicated by scanning electron microscopy (SEM). Accordingly, Young's modulus and tensile strength of films were largely increased by 80 and 64 %, respectively, specifically near the cCNC percolation threshold (4 wt%), whereas the water vapor permeability (WVP) was reduced by 52 % at the optimum 6.0 wt% cCNC content in relation to the non-reinforced gelatin matrix (0.10 vs. 0.18 g H2O mm m-2 h-1 kPa-1). The oxygen transmission rates (OTR) of the gelatin/cCNC bionanocomposites were < 0.01 cm3 m-2 day-1, making them technically competitive to most promising biopolymers like polycaprolactone (PCL) and poly(lactic acid) (PLA). This study reveals how TEMPO-oxidized cellulose nanocrystals can broaden the performance of biodegradable gelatin films for use in packaging. The gelatin/cCNC bionanocomposites also represent an effective approach for designing newly sustainability-inspired flexible materials from the surface modification of nanocelluloses targeting specific interactions with protein structures.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124535, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830327

RESUMEN

In this study, we report on the fabrication of hybrid nanofibers for labeling and bioimaging applications. Our approach is involved for developing highly fluorescent nanofibers using a blend of polylactic acid, polyethyleneglycol, and perylenediimide dyes, through the solution blow spinning technique. The nanofibers are exhibited diameters ranging from 330 nm to 420 nm. Nanofibers showed excellent red and near-infrared fluorescence emissive properties in fluorescent spectroscopy. Moreover, the strong two-photon absorption phenomenon was observed for nanofibers under confocal microscopy. To assess the applicability of these fluorescent nanofibers in bioimaging settings, we employ two types of mammalian cells B16F1 melanoma cells and J774.A1 macrophages. Both cell types exhibit negligible cytotoxicity after 24 h incubation with the nanofibers, indicating the suitability of nanofibers for cell-based experiments. We also observe strong interactions between the nanofibers and cells, as evidenced by two major events: a) the acquisition of an elongated cellular morphology with the major cellular axis parallel to the nanofibers and b) the accumulation of actin filaments along the points of contact of the cells with the fibers. Our findings demonstrate the suitability of these newly developed fluorescent nanofibers in cell-based applications for guiding cellular behavior. We expect that these fluorescent nanofibers have the potential to serve as scaffold materials for long-time tracking of cell-fiber interactions in fluorescence microscopy.


Asunto(s)
Colorantes Fluorescentes , Nanofibras , Andamios del Tejido , Nanofibras/química , Animales , Ratones , Andamios del Tejido/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Línea Celular Tumoral , Poliésteres/química , Microscopía Confocal , Polietilenglicoles/química , Línea Celular , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos
4.
Food Res Int ; 180: 114091, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395568

RESUMEN

In recent years, lignin has drawn increasing attention due to its intrinsic antibacterial and antioxidant activities, biodegradability, and biocompatibility. Yet, like several other biogenic structures, its compositional heterogeneity represents a challenge to overcome. In addition, there are few studies regarding food applications of lignin. Herein, we evaluate the antimicrobial and antioxidant effects of lignin from two different sources. These lignins were characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopies. Their antibacterial and antioxidant capacities (DPPH and Folin-Ciocalteu methods) were also investigated. Susceptibility tests were performed with the minimal inhibitory (MIC) and bactericidal (MBC) concentrations using the micro-broth dilution technique. Kraft lignin presented higher radical-scavenging and antibacterial activities than alkali lignin, indicating the dependence of antioxidant and antibacterial activities on the precursor biomass. Scanning electron microscopy shows morphologic changes in the bacteria after exposure to lignin, while confocal microscopy suggests that kraft lignin has affinity towards bacterial surfaces and the ability to cause cell membrane destabilization. Lignin inhibited the growth of Staphylococcus aureus and Salmonella Enteritidis in skimmed milk, herein taken as food model. Our results suggest that lignins are promising candidates for green additives to improve quality and safety within the food chain.


Asunto(s)
Antioxidantes , Lignina , Animales , Lignina/farmacología , Lignina/química , Antioxidantes/farmacología , Antioxidantes/química , Leche , Ríos , Antibacterianos/farmacología
5.
Polymers (Basel) ; 15(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959983

RESUMEN

A detailed structural investigation of a promising bio-based polymer, polyglycerol citrate polyester, obtained by the bulk polycondensation of glycerol (Gly) against citric acid (Cit) under mild reaction was performed. The reaction in conditions with and without catalyst use (sulfuric acid, H2SO4) was investigated, showing evidence that it is possible to modify the polymer solubility according to the ratio and catalyst utilization. 13C and 1H NMR indicated that synthesis catalyzed with Cit excess leads to higher esterification degrees of citrate groups. In contrast, the Gly moieties are more prominent in catalyzed polymers regardless of the excess monomers. Overall, a successful conversion of Gly and Cit into polyesters was attained even without catalysis, enabling a simple route for the large-scale production of this green material to be used as a coating material. This polymer has been shown to be well-suited for coating seeds and might be a promising material for similar agricultural applications. Tests on soybean seed coating with a PGCit solution of 75% indicated that the seed quality and germination rate were not affected by the PGCit coating, concluding that this polymer is suitable for this application.

6.
Bioact Mater ; 29: 151-176, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37502678

RESUMEN

We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.

7.
Sci Rep ; 12(1): 2333, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149687

RESUMEN

Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Dendríticas/inmunología , Durapatita/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis , Poliésteres/farmacología , Andamios del Tejido , Adulto , Anciano , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Células Cultivadas , Durapatita/inmunología , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteogénesis/efectos de los fármacos , Impresión Tridimensional
8.
Talanta ; 239: 123076, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34876273

RESUMEN

Mass testing for the diagnostics of COVID-19 has been hampered in many countries owing to the high cost of the methodologies to detect genetic material of SARS-CoV-2. In this paper, we report on a low-cost immunosensor capable of detecting the spike protein of SARS-CoV-2, including in samples of inactivated virus. Detection is performed with electrical impedance spectroscopy using an immunosensor that contains a monolayer film of carboxymethyl chitosan as matrix, coated with an active layer of antibodies specific to the spike protein. In addition to a low limit of detection of 0.179 fg/mL within an almost linear behavior from 10-20 g/mL to 10-14 g/mL, the immunosensor was highly selective. For the samples with the spike protein could be distinguished in multidimensional projection plots from samples with other biomarkers and analytes that could be interfering species for healthy and infected patients. The excellent analytical performance of the immunosensors was validated with the distinction between control samples and those containing inactivated SARS-CoV-2 at different concentrations. The mechanism behind the immunosensor performance is the specific antibody-protein interaction, as confirmed with the changes induced in C-H stretching and protein bands in polarization-modulated infrared reflection absorption spectra (PM-IRRAS). Because impedance spectroscopy measurements can be made with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing even in places with limited resources.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Espectroscopía Dieléctrica , Humanos , Inmunoensayo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
9.
Biosens Bioelectron ; 199: 113875, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922318

RESUMEN

On-site monitoring the presence of pesticides on crops and food samples is essential for precision and post-harvest agriculture, which demands nondestructive analytical methods for rapid, low-cost detection that is not achievable with gold standard methods. The synergy between eco-friendly substrates and printed devices may lead to wearable sensors for decentralized analysis of pesticides in precision agriculture. In this paper we report on a wearable non-enzymatic electrochemical sensor capable of detecting carbamate and bipyridinium pesticides on the surface of agricultural and food samples. The low-cost devices (

Asunto(s)
Técnicas Biosensibles , Plaguicidas , Dispositivos Electrónicos Vestibles , Agricultura , Inocuidad de los Alimentos , Plaguicidas/análisis , Poliésteres
10.
Mater Sci Eng C Mater Biol Appl ; 129: 112409, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579918

RESUMEN

This study reports the generation of curauá-derived carbon dots (C-dots) and their suitability for Fe(III) detection, bioimaging and FACS analysis. C-dots were generated from curauá (Ananas erectifolius) fibers by a facile one-step hydrothermal approach. They exhibited graphite-like structure with a mean diameter of 2.4 nm, high water solubility, high levels of carboxyl and hydroxyl functional groups, excitation-dependent multicolor fluorescence emission (in the range 450 nm - 560 nm) and superior photostability. C-dots were highly selective and effective for the detection of ferric Fe(III) ion in an aqueous medium with a detection limit of 0.77 µM in the linear range of 0-30 µM, a value much lower than the guideline limits proposed by the World Health Organization (WHO). In biological cell systems, C-dots were very well tolerated by B16F1 mouse melanoma and J774.A1 mouse macrophages cell lines, both of which effectively internalized C-dots in their cytoplasmic compartment. Finally, C-dots were effective probes for long-term live cell imaging experiments and multi-channel flow cytometry analysis. Collectively, our findings demonstrate that curauá-derived C-dots serve as versatile and effective natural products for Fe(III) ion sensing, labeling and bioimaging of various cell types. This study adds novel C-dots to the library of carbon-based probes and paves the way towards a sustainable conversion of a most abundant biomass waste into value-added products.


Asunto(s)
Carbono , Puntos Cuánticos , Animales , Compuestos Férricos , Colorantes Fluorescentes , Hierro , Ratones , Espectrometría de Fluorescencia
11.
ACS Appl Mater Interfaces ; 13(22): 26237-26246, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038087

RESUMEN

Renewable cellulose substrates with submicron- and nanoscale structures have revived interest in paper electronics. However, the processes behind their production are still complex and time- and energy-consuming. Besides, the weak electrolytic properties of cellulose with submicron- and nanoscale structures have hindered its application in transistors and integrated circuits with low-voltage operation. Here, we report a simple, low-cost approach to produce flexible ionic conductive cellulose mats using solution blow spinning, which are used both as dielectric interstrate and substrate in low-voltage devices. The electrochemical properties of the cellulose mats are tuned through infiltration with alkali hydroxides (LiOH, NaOH, or KOH), enabling their application as dielectric and substrate in flexible, low-voltage, oxide-based field-effect transistors and pencil-drawn resistor-loaded inverters. The transistors exhibit good transistor performances under operation voltage below 2.5 V, and their electrical performance is strictly related to the type of alkali ionic specie incorporated. Devices fabricated on K+-infiltrated cellulose mats present the best characteristics, indicating pure capacitive charging of the semiconductor. The pencil-drawn load resistor inverter presents good dynamic performance. These findings may pave the way for a new generation of low-power, wearable electronics, enabling concepts such as the "Internet of Things".

13.
Biomacromolecules ; 22(2): 454-466, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33284004

RESUMEN

Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.


Asunto(s)
Nanopartículas , Nanoestructuras , Animales , Celulosa , Células HeLa , Humanos , Ratones
14.
Int J Biol Macromol ; 165(Pt B): 2974-2983, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33122067

RESUMEN

We report on gelatin films incorporating rosin-grafted cellulose nanocrystals (r-CNCs), which fulfill the most relevant requirements for antimicrobial packaging applications. Transparent gelatin/r-CNCs bionanocomposite films (0.5-6 wt% r-CNCs) were obtained by solution casting and displayed high UV-barrier properties, which were superior to the most used plastic packaging films. The gelatin/r-CNCs films exhibited a moderate water vapor permeability (0.09 g mm/m2 h kPa), and high tensile strength (40 MPa) and Young's modulus (1.9 GPa). The r-CNCs were more efficient in improving the optical, water vapor barrier and tensile properties of gelatin films than conventional CNCs. Grafting of rosin on CNCs resulted in an antimicrobial nanocellulose that inhibited the growth of Staphylococcus aureus and Escherichia coli. The antibacterial properties of r-CNCs were sustained in the gelatin films, as demonstrated by agar diffusion tests and proof-of-principle experiments involving cheese storage. Overall, the incorporation of r-CNCs as active fillers in gelatin films is a suitable approach for producing novel eco-friendly, antimicrobial packaging materials.


Asunto(s)
Celulosa/química , Embalaje de Alimentos , Gelatina/química , Resinas de Plantas/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Celulosa/farmacología , Gelatina/síntesis química , Gelatina/farmacología , Humanos , Nanopartículas/química , Permeabilidad , Resinas de Plantas/síntesis química , Resinas de Plantas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Vapor , Resistencia a la Tracción
15.
ACS Appl Mater Interfaces ; 12(41): 45673-45701, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937068

RESUMEN

Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Nanofibras/química , Polímeros/química , Ingeniería de Tejidos , Animales , Sistemas de Liberación de Medicamentos , Humanos , Tamaño de la Partícula , Propiedades de Superficie
16.
Carbohydr Polym ; 245: 116437, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718594

RESUMEN

This contribution falls within the context of sustainable functional materials. We report on the production of fruit leathers based chiefly on peach pulp, but combined with hydroxypropyl methylcellulose (HPMC) as binding agent and cellulose micro/nanofibrils (CMNF) as fillers. Increased permeability to moisture (from 0.9 to 5.6 g mm kPa-1 h-1m-2) and extensibility (from 10 to 17%) but reduced mechanical resistance (67-2 MPa) and stiffness (1.8 GPa-18 MPa) evidenced the plasticizing effect of peach pulp in HPMC matrix, which was reinforced by CMNF. A ternary mixture design allowed building response surfaces and optimizing leather composition. The laboratory-scale leather production via bench casting was extended to a pilot-scale through continuous casting. The effect of scaling up on the nutritional and sensory features of the peach leather was also depicted. The herein established composition-processing-property correlations are useful to support the large-scale production of peach leather towards applications both as packaging materials and as nutritional leathers.


Asunto(s)
Antioxidantes/química , Películas Comestibles , Frutas/química , Derivados de la Hipromelosa/química , Prunus persica/química , Humedad , Microfibrillas/química , Peso Molecular , Permeabilidad , Proyectos Piloto , Plastificantes/química
17.
Carbohydr Polym ; 238: 116198, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299555

RESUMEN

In this study, continuous casting is proposed as a suitable approach to scale up the production of gelatin-cellulose nanocrystals (CNCs) bionanocomposites. The processing conditions and bionanocomposite properties were established based on the ζ-potential and gelatin content, and CNCs concentration, respectively. Gelatin film-forming solution at 20 wt% was required for proper continuous casting processing, leading to a productivity of 0.20 m2 film/min, which was at least 1000-fold higher than that of the classical bench casting. The gelatin-CNCs bionanocomposites displayed transparency, flexibility, and improved UV-barrier and thermal properties. Adding only 0.5 wt% of CNCs resulted in an increase of 77 % and 48 % in the tensile strength and Young's modulus of gelatin, respectively. Comparison with previous nanocellulose-based nanocomposites pointed out the relatively superior performance of the gelatin-CNCs bionanocomposites obtained by continuous casting for various applications, including flexible food packaging.


Asunto(s)
Celulosa , Embalaje de Alimentos , Gelatina , Nanocompuestos , Nanopartículas , Materiales Biocompatibles/química , Celulosa/química , Gelatina/química , Nanocompuestos/química , Nanopartículas/química , Permeabilidad , Resistencia a la Tracción
18.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033030

RESUMEN

A potentiometric E-tongue system based on low-selective polymeric membrane and chalcogenide-glass electrodes is employed to monitor the taste-and-odor-causing pollutants, geosmin (GE) and 2-methyl-isoborneol (MIB), in drinkable water. The developed approach may permit a low-cost monitoring of these compounds in concentrations near the odor threshold concentrations (OTCs) of 20 ng/L. The experiments demonstrate the success of the E-tongue in combination with partial least squares (PLS) regression technique for the GE/MIB concentration prediction, showing also the possibility to discriminate tap water samples containing these compounds at two concentration levels: the same OTC order from 20 to 100 ng/L and at higher concentrations from 0.25 to 10 mg/L by means of PLS-discriminant analysis (DA) method. Based on the results, developed multisensory system can be considered a promising easy-to-handle tool for express evaluation of GE/MIB species and to provide a timely detection of alarm situations in case of extreme pollution before the drinkable water is delivered to end users.


Asunto(s)
Canfanos/aislamiento & purificación , Agua Potable/análisis , Naftoles/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Canfanos/química , Nariz Electrónica/tendencias , Humanos , Naftoles/química , Potenciometría/tendencias , Contaminantes Químicos del Agua/química
19.
Sensors (Basel) ; 20(2)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940816

RESUMEN

Colorimetric sensors developed by the solution blow spinning (SBS) technique have a rapid response to a variation in different physicochemical properties. In this study, polystyrene nanofibrous (PSNF) mats containing the bromothymol blue (BTB) indicator were obtained by SBS for the pH sensing of wine sample. The incorporation of the indicator did not promote changes in fiber diameter but led to the appearance of beads, allowing for the encapsulation of BTB. The halochromic property of BTB was retained in the PSNF material, and the migration tests showed that the indicator mats presented values below the maximum acceptable limit (10 mg dm-2) established by EU Commission Regulation No. 10/2011 for foods with an alcohol content up to 20%. The present study opens the possibility of applying nanostructured materials to innovative food packaging which, through nanosensory zones, change color as a function of the food pH.

20.
Int J Biol Macromol ; 141: 504-510, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493450

RESUMEN

Alginate (ALG) is an abundant, biocompatible, regenerative, and nontoxic polysaccharide that has potential applications in tissue engineering. Silver sulfadiazine (SDZ) is a topical antibiotic used to control bacterial infection in burns. Aiming to combine the intrinsic alginate characteristics and silver sulfadiazine antimicrobial properties, hydrotalcite ([Mg-Al]-LDH) was used as a host matrix to obtain a system efficient in delivering SDZ from alginate films. SDZ was successfully intercalated in [Mg-Al]-LDH through structural reconstruction. Different solutions were prepared using sodium alginate at 10 wt%, glycerol at 10 wt% as a plasticizer and [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ as fillers at 1 wt% and 5 wt%. Films were obtained by continuous casting and further characterized for their microstructural, mechanical, water barrier and antimicrobial properties. Cytotoxicity tests were also performed on fibroblasts cells. The incorporation of [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ presented neither negative nor positive effects on the mechanical properties and morphology of the alginate films. Moreover, samples containing SDZ exhibited inhibitory activity against S. aureus, E. coli, and S. enterica. The addition of [Mg-Al]-LDH/SDZ even at the highest concentration did not afford a very significant cytotoxicity to the alginate-[Mg-Al]-LDH/SDZ films. These results describe a suitable approach for preparing innovative active wound dressings integrated to efficient drug delivery.


Asunto(s)
Alginatos , Antibacterianos , Bacterias/crecimiento & desarrollo , Vendajes , Membranas Artificiales , Sulfadiazina de Plata , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Alginatos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Humanos , Ensayo de Materiales , Sulfadiazina de Plata/química , Sulfadiazina de Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA