Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mater Adv ; 5(18): 7170-7198, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39156594

RESUMEN

Vanadium redox flow batteries have applications for large-scale electricity storage. This paper reports the influence of carbon structural characteristics of sustainable walnut shell-derived carbons in carbon/polyvinylidene fluoride composite electrodes on vanadium redox reactions. Pyrolysis, gasification, and chemical treatment procedures were used to modify the structural characteristics of carbons. Carbon functional groups were modified by chemical treatment with HNO3, heat treatment with K2CO3, and high-temperature NH3 treatment. Carbon porous structures were characterized using gas adsorption studies. Raman spectroscopy and X-ray diffraction were used to characterize the carbon molecular structure. Functional groups were characterized using X-ray photoelectron spectroscopy, acid/base titrations, temperature-programmed desorption, and Fourier transform infrared spectroscopy. The influence of carbon structure, porosity, and surface functional groups on the redox reactions of vanadium was investigated using cyclic voltammetry and electrical impedance spectroscopy. The VO2+/VO2 + and V2+/V3+ couples had well-defined peaks in cyclic voltammetry, with the former being the most intense, but the V3+/VO2+ couple was not observed for samples carbonized under nitrogen. The results show that V2+/V3+ and VO2+/VO2 + couples observed in cyclic voltammograms were enhanced for carbonization temperatures up to 800 °C. Electrical impedance spectroscopy also showed impedance trends. The electrochemistry results are primarily related to changes in carbon structure and the catalysis of V3+ oxidation by surface functional groups in the carbon structure. The V3+/VO2+ couple was limited by slow kinetics, but it occurs on specific oxygen and nitrogen sites in the carbon structure. The oxidation of V(iii) to V(iv) only occurs on a limited number of surface sites, and the outer-sphere electron transfer to oxidize V(iii) takes place at much more positive potentials. The coulombic, voltage, and energy efficiency of the carbon electrodes were suitable for batteries.

2.
J Environ Manage ; 355: 120466, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437744

RESUMEN

The feasibility of producing activated carbon (AC) from real Household Mixed Plastic Waste (HMPW) comprising of LDPE, HDPE, PP, PS, and PET for carbon capture via direct carbonisation followed by microwave-assisted or conventional thermally assisted chemical activation was investigated. A microwave-assisted activation procedure was adopted to assess the impact on the CO2 capture capacity of the resulting AC using both a lower temperature (400 °C vs. 700 °C) and a shorter duration (5 vs. 120 mins) than that required for conventional activation. The results obtained showed that the AC yield was 71 and 78% for the conventional and microwave-assisted samples, respectively. Microwave activation consumed five-fold less energy (0.19 kWh) than the conventional activation (0.98 kWh). Thermal stability results indicated total weight loss of 10.0 and 8.3 wt%, respectively, for conventional and microwave-activated samples over the temperature range of 25-1000 °C, with ACs from both activation routes displaying a type 1 nitrogen isotherm. The dynamic CO2 uptake capacity at 1 bar and 25 °C was 1.53 mmol/g, with maximum equilibrium uptake ranging between 1.32 and 2.39 mmol/g at temperatures (0-50 °C) and 1 bar for the conventionally activated AC. The analogous microwave-activated sample showed a higher dynamic CO2 uptake of 1.62 mmol/g and equilibrium uptake in the range 1.58-2.88 mmol/g under equivalent conditions. The results therefore indicate that microwave activation results in enhanced carbon capture potential. To the best of our knowledge, this is the first-time microwave heating has been employed to convert household mixed plastic wastes directly into ACs for carbon capture applications. This report therefore demonstrates that the management of mixed plastics could lead to the development of a circular economy through the conversion of waste into value-added materials.


Asunto(s)
Dióxido de Carbono , Carbón Orgánico , Estudios de Factibilidad , Temperatura , Microondas
3.
ACS Appl Mater Interfaces ; 15(41): 48135-48146, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37792067

RESUMEN

A carbon matrix-supported Ni catalyst with surface/subsurface S species is prepared using a sacrificial metal-organic framework synthesis strategy. The resulting highly dispersed Ni-S/C catalyst contains surface discontinuous and electron-deficient Niδ+ sites modified by p-block S elements. This catalyst proved to be extremely active and selective for alkyne hydrogenation. Specifically, high intrinsic activity (TOF = 0.0351 s-1) and superior selectivity (>90%) at complete conversion were achieved, whereas an analogous S-free sample prepared by the same synthetic route performed poorly. That is, the incorporation of S in Ni particles and the carbon matrix exerts a remarkable positive effect on catalytic behavior for alkyne hydrogenation, breaking the activity-selectivity trade-off. Through comprehensive experimental studies, enhanced performance of Ni-S/C was ascribed to the presence of discontinuous Ni ensembles, which promote desorption of weakly π-bonded ethylene and an optimized electronic structure modified via obvious p-d orbital hybridization.

4.
RSC Adv ; 13(20): 13698-13714, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152559

RESUMEN

Green diesel is the second generation biofuel with the same structure as fossil fuels (alkanes), allowing this biofuel to provide excellent fuel properties over biodiesel such as higher energy content and lower hazardous gas emission. Generally, green diesel can be produced through the deoxygenation/hydrogenation of natural oil and/or its derivatives at 200-400 °C and 1-10 MPa over supported metal catalysts. This process comprises of three reaction pathways: hydrodeoxygenation, decarboxylation, and decarbonylation. The extent to which these three different pathways are involved is strongly influenced by the catalyst, pressure, and temperature. Subsequently, the determination of catalyst and reaction condition plays a significant role owing to the feasibility of the process and the economic point of view. This article emphasizes the reaction pathway of green diesel production as well as the parameters influencing the predominant reaction route.

5.
ACS Appl Mater Interfaces ; 14(18): 20943-20952, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482431

RESUMEN

The utilization of biocatalytic oxidations has evolved from the niche applications of the early 21st century to a widely recognized tool for general chemical synthesis. One of the major drawbacks that hinders commercialization is the dependence on expensive nicotinamide adenine dinucleotide (NAD(P)+) cofactors, and so, their regeneration is essential. Here, we report the design of carbon-supported Pt catalysts that can regenerate NAD(P)+ by proton-driven NAD(P)H oxidation with concurrent hydrogen formation. The carbon support was modified to tune the electronic nature of the Pt nanoparticles, and it was found that the best catalyst for NAD(P)+ regeneration (TOF = 581 h-1) was electron-rich Pt on carbon. Finally, the heterogeneous Pt catalyst was applied in the biocatalytic oxidation of a variety of alcohols catalyzed by different alcohol dehydrogenases. The Pt catalyst exhibited good compatibility with the biocatalytic system. Its NAD(P)+ regeneration function successfully supported biocatalytic conversion from alcohols to corresponding ketone or lactone products. This work provides a promising strategy for chemical synthesis via NAD(P)+-dependent pathways utilizing a cooperative inorganic-enzymatic catalytic system.


Asunto(s)
NAD , Platino (Metal)/química , Protones , Alcoholes , Carbono , Catálisis , NAD/metabolismo , Oxidación-Reducción , Regeneración
6.
Chem Sci ; 10(12): 3556-3566, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30996947

RESUMEN

The impregnation method is commonly employed to prepare supported multi-metallic catalysts but it is often difficult to achieve homogeneous and stable alloy structures. In this work, we revealed the dependence of alloying behavior on the support morphology by fabricating Ni-Cu over different shaped CeO2. Specifically, nanocube ceria favoured the formation of monometallic Cu and Ni-rich phases whereas polycrystalline and nanorod ceria induced the formation of a mixture of Cu-rich alloys with monometallic Ni. Surprisingly, nanopolyhedron (NP) ceria led to the generation of homogeneous Ni-Cu nanoalloys owing to the equivalent interactions of Ni and Cu species with CeO2 (111) facets which exposed relatively few coordinative unsaturated sites. More importantly, a strong interfacial effect was observed for Ni-Cu/CeO2-NP due to the presence of CeO x adjacent to metal sites at the interface, resulting in excellent stability of the alloy structure. With the aid of CeO x , NiCu nanoalloys showed outstanding catalytic behaviour in acetylene and hexyne hydrogenation reactions. This study provides valuable insights into how fully alloyed and stable catalysts may be prepared by tailoring the support morphology while still employing a universal impregnation method.

7.
J Am Chem Soc ; 140(13): 4736-4742, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553264

RESUMEN

Solid metal oxides for carbon capture exhibit reduced adsorption capacity following high-temperature exposure, due to surface area reduction by sintering. Furthermore, only low-coordinate corner/edge sites on the thermodynamically stable (100) facet display favorable binding toward CO2, providing inherently low capacity. The (111) facet, however, exhibits a high concentration of low-coordinate sites. In this work, MgO(111) nanosheets displayed high capacity for CO2, as well as a ∼65% increase in capacity despite a ∼30% reduction in surface area following sintering (0.77 mmol g-1 @ 227 m2 g-1 vs 1.28 mmol g-1 @ 154 m2 g-1). These results, unique to MgO(111), suggest intrinsic differences in the effects of sintering on basic site retention. Spectroscopic and computational investigations provided a new structure-activity insight: the importance of high-temperature activation to unleash the capacity of the polar (111) facet of MgO. In summary, we present the first example of a faceted sorbent for carbon capture and challenge the assumption that sintering is necessarily a negative process; here we leverage high-temperature conditions for facet-dependent surface activation.

8.
Artículo en Inglés | MEDLINE | ID: mdl-28340397

RESUMEN

Absorption coefficients for the asymmetric stretching modes of CH3 and CH2 groups formed by adsorbing alkyl chained species from the vapour phase onto two different adsorbents; a γ-alumina support material and a supported metal catalyst have been determined using a custom made thermogravimetric-infrared cell. Results show that despite variations in the individually calculated absorption coefficients (ca. ±20%), the ratio of the absorption coefficients (CH2:CH3) remained consistent despite employing adsorbates of varying chain length and functionality, and despite the choice of adsorbents which exhibited different surface areas and light scattering characteristics. The use of this absorption coefficient ratio has been shown to be applicable in the quantification of the average chain length of multiple adsorbed species of differing chain length. The potential for applying this to scenarios where reactions on surfaces are monitored is discussed.

9.
Faraday Discuss ; 188: 499-523, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27075959

RESUMEN

AuPd nanoparticles were prepared following a methodology designed to produce core-shell structures (an Au core and a Pd shell). Characterisation suggested that slow addition of the shell metal favoured deposition onto the pre-formed core, whereas more rapid addition favoured the formation of a monometallic Pd phase in addition to some nanoparticles with the core-shell morphology. When used for the selective hydrogenation of acetylene, samples that possessed monometallic Pd particles favoured over-hydrogenation to form ethane. A sample prepared by the slow addition of a small amount of Pd resulted in the formation of a core-shell structure but with an incomplete Pd shell layer. This material exhibited a completely different product selectivity with ethylene and oligomers forming as the major products as opposed to ethane. The improved performance was thought to be as a result of the absence of Pd particles, which are capable of forming a Pd-hydride phase, with enhanced oligomer selectivity associated with reaction on uncovered Au atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA