Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Math Biol ; 86(5): 56, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625656

RESUMEN

Mathematical modelling applied to preclinical, clinical, and public health research is critical for our understanding of a multitude of biological principles. Biology is fundamentally heterogeneous, and mathematical modelling must meet the challenge of variability head on to ensure the principles of diversity, equity, and inclusion (DEI) are integrated into quantitative analyses. Here we provide a follow-up perspective on the DEI plenary session held at the 2023 Society for Mathematical Biology Annual Meeting to discuss key issues for the increased integration of DEI in mathematical modelling in biology.


Asunto(s)
Diversidad, Equidad e Inclusión , Salud Pública , Conceptos Matemáticos , Modelos Biológicos
2.
Math Biosci ; 302: 1-8, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29709517

RESUMEN

Mathematical modeling is a powerful tool in systems biology; we focus here on improving the reliability of model predictions by reducing the uncertainty in model dynamics through experimental design. Model-based experimental design is a process by which experiments can be systematically chosen to reduce dynamic uncertainty in a given model. We discuss the Maximally Informative Next Experiment (MINE) method for group-wise selection of points in an experimental design and present a convergence result for MINE with nonlinear models. As an application, we illustrate the method on polynomial regression and an ODE model for immune system dynamics. The MINE criterion sequentially determines experiments that can be conducted to best refine model dynamics.


Asunto(s)
Modelos Biológicos , Dinámicas no Lineales , Biología de Sistemas/métodos , Animales , Humanos , Conceptos Matemáticos , Modelos Inmunológicos , Factores de Transcripción NFATC/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Proyectos de Investigación/estadística & datos numéricos , Transducción de Señal/inmunología , Biología de Sistemas/estadística & datos numéricos , Incertidumbre
3.
Processes (Basel) ; 3(1): 75-97, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26525178

RESUMEN

The kinase Syk is intricately involved in early signaling events in B cells and is required for proper response when antigens bind to B cell receptors (BCRs). Experiments using an analog-sensitive version of Syk (Syk-AQL) have better elucidated its role, but have not completely characterized its behavior. We present a computational model for BCR signaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL. Following the use of sensitivity analysis to identify significant reaction parameters, we screen for parameter vectors that produced graded responses to BCR stimulation as is observed experimentally. We demonstrate qualitative agreement between the model and dose response data for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-κB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitive to small reductions in kinase activity than Erkp activation, which is essentially unchanged. Since this profile of high Erkp and reduced NF-κB is consistent with anergy, this implies that anergy is particularly sensitive to small changes in catalytic activity. Also, under a range of forward and reverse ligand binding rates, our model of Erkp and NF-κB activation displays a dependence on a power law affinity: the ratio of the forward rate to a non-unit power of the reverse rate. This dependence implies that B cells may respond to certain details of binding and unbinding rates for ligands rather than simple affinity alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA