Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Med Chem ; 66(23): 15629-15647, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967851

RESUMEN

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Adulto , Humanos , Animales , Ratones , Quinasas Ciclina-Dependientes , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis , Puntos de Control del Ciclo Celular , Modelos Animales de Enfermedad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Quinasa 9 Dependiente de la Ciclina , Neoplasias/tratamiento farmacológico
3.
ACS Chem Biol ; 13(9): 2438-2448, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30102854

RESUMEN

Bromodomains have been pursued intensively over the past several years as emerging targets for the development of anticancer and anti-inflammatory agents. It has recently been shown that some kinase inhibitors are able to potently inhibit the bromodomains of BRD4. The clinical activities of PLK inhibitor BI-2536 and JAK2-FLT3 inhibitor TG101348 have been attributed to this unexpected polypharmacology, indicating that dual-kinase/bromodomain activity may be advantageous in a therapeutic context. However, for target validation and biological investigation, a more selective target profile is desired. Here, we report that benzo[e]pyrimido-[5,4- b]diazepine-6(11H)-ones, versatile ATP-site directed kinase pharmacophores utilized in the development of inhibitors of multiple kinases, including several previously reported kinase chemical probes, are also capable of exhibiting potent BRD4-dependent pharmacology. Using a dual kinase-bromodomain inhibitor of the kinase domains of ERK5 and LRRK2, and the bromodomain of BRD4 as a case study, we define the structure-activity relationships required to achieve dual kinase/BRD4 activity, as well as how to direct selectivity toward inhibition of either ERK5 or BRD4. This effort resulted in identification of one of the first reported kinase-selective chemical probes for ERK5 (JWG-071), a BET selective inhibitor with 1 µM BRD4 IC50 (JWG-115), and additional inhibitors with rationally designed polypharmacology (JWG-047, JWG-069). Co-crystallography of seven representative inhibitors with the first bromodomain of BRD4 demonstrate that distinct atropisomeric conformers recognize the kinase ATP-site and the BRD4 acetyl lysine binding site, conformational preferences supported by rigid docking studies.


Asunto(s)
Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Benzodiazepinonas/química , Benzodiazepinonas/farmacología , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Células HeLa , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/química , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Polifarmacología , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
4.
Cancer Discov ; 7(10): 1136-1153, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28729405

RESUMEN

We characterized the enhancer landscape of 66 patients with acute myeloid leukemia (AML), identifying 6 novel subgroups and their associated regulatory loci. These subgroups are defined by their superenhancer (SE) maps, orthogonal to somatic mutations, and are associated with distinct leukemic cell states. Examination of transcriptional drivers for these epigenomic subtypes uncovers a subset of patients with a particularly strong SE at the retinoic acid receptor alpha (RARA) gene locus. The presence of a RARA SE and concomitant high levels of RARA mRNA predisposes cell lines and ex vivo models to exquisite sensitivity to a selective agonist of RARα, SY-1425 (tamibarotene). Furthermore, only AML patient-derived xenograft (PDX) models with high RARA mRNA were found to respond to SY-1425. Mechanistically, we show that the response to SY-1425 in RARA-high AML cells is similar to that of acute promyelocytic leukemia treated with retinoids, characterized by the induction of known retinoic acid response genes, increased differentiation, and loss of proliferation.Significance: We use the SE landscape of primary human AML to elucidate transcriptional circuitry and identify novel cancer vulnerabilities. A subset of patients were found to have an SE at RARA, which is predictive for response to SY-1425, a potent and selective RARα agonist, in preclinical models, forming the rationale for its clinical investigation in biomarker-selected patients. Cancer Discov; 7(10); 1136-53. ©2017 AACR.See related commentary by Wang and Aifantis, p. 1065.This article is highlighted in the In This Issue feature, p. 1047.


Asunto(s)
Benzoatos/administración & dosificación , Elementos de Facilitación Genéticos , Epigenómica/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Receptor alfa de Ácido Retinoico/genética , Tetrahidronaftalenos/administración & dosificación , Anciano , Animales , Benzoatos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Receptor alfa de Ácido Retinoico/agonistas , Tetrahidronaftalenos/farmacología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Med Chem ; 57(21): 9019-27, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25314271

RESUMEN

BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain function. Using fluorous-tagged multicomponent reactions, we developed a focused chemical library of bromodomain inhibitors around a 3,5-dimethylisoxazole biasing element with micromolar biochemical IC50. Iterative synthesis and biochemical assessment allowed optimization of novel BET bromodomain inhibitors based on an imidazo[1,2-a]pyrazine scaffold. Lead compound 32 (UMB-32) binds BRD4 with a Kd of 550 nM and 724 nM cellular potency in BRD4-dependent lines. Additionally, compound 32 shows potency against TAF1, a bromodomain-containing transcription factor previously unapproached by discovery chemistry. Compound 32 was cocrystallized with BRD4, yielding a 1.56 Å resolution crystal structure. This research showcases new applications of fluorous and multicomponent chemical synthesis for the development of novel epigenetic inhibitors.


Asunto(s)
Imidazoles/síntesis química , Isoxazoles/química , Proteínas Nucleares/antagonistas & inhibidores , Pirazinas/síntesis química , Factores de Transcripción/antagonistas & inhibidores , Ácidos Alcanesulfónicos/química , Azepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cristalografía por Rayos X , Fluorocarburos/química , Regulación de la Expresión Génica , Humanos , Imidazoles/farmacología , Concentración 50 Inhibidora , Ligandos , Modelos Moleculares , Proteínas Nucleares/química , Pirazinas/farmacología , Piridinas/síntesis química , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , Factores de Transcripción/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-25274755

RESUMEN

MYC is a master regulator of stem cell state, embryogenesis, tissue homeostasis, and aging. As in health, in disease MYC figures prominently. Decades of biological research have identified a central role for MYC in the pathophysiology of cancer, inflammation, and heart disease. The centrality of MYC to such a vast breadth of disease biology has attracted significant attention to the historic challenge of developing inhibitors of MYC. This review will discuss therapeutic strategies toward the development of inhibitors of MYC-dependent transcriptional signaling, efforts to modulate MYC stability, and the elusive goal of developing potent, direct-acting inhibitors of MYC.


Asunto(s)
Regulación de la Expresión Génica , Genes myc/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Transducción de Señal , Animales , Inestabilidad Cromosómica , Diseño de Fármacos , Humanos , Transcripción Genética
7.
Cancer Cell ; 24(6): 777-90, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24332044

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is a biologically heterogeneous and clinically aggressive disease. Here, we explore the role of bromodomain and extra-terminal domain (BET) proteins in DLBCL, using integrative chemical genetics and functional epigenomics. We observe highly asymmetric loading of bromodomain 4 (BRD4) at enhancers, with approximately 33% of all BRD4 localizing to enhancers at 1.6% of occupied genes. These super-enhancers prove particularly sensitive to bromodomain inhibition, explaining the selective effect of BET inhibitors on oncogenic and lineage-specific transcriptional circuits. Functional study of genes marked by super-enhancers identifies DLBCLs dependent on OCA-B and suggests a strategy for discovering unrecognized cancer dependencies. Translational studies performed on a comprehensive panel of DLBCLs establish a therapeutic rationale for evaluating BET inhibitors in this disease.


Asunto(s)
Elementos de Facilitación Genéticos , Linfoma de Células B Grandes Difuso/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Azepinas/farmacología , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/genética , Genes myc , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-6 , Transactivadores/fisiología , Transcripción Genética , Triazoles/farmacología
8.
Nat Methods ; 9(10): 1005-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22961245

RESUMEN

A variety of genetically encoded reporters use changes in fluorescence (or Förster) resonance energy transfer (FRET) to report on biochemical processes in living cells. The standard genetically encoded FRET pair consists of CFPs and YFPs, but many CFP-YFP reporters suffer from low FRET dynamic range, phototoxicity from the CFP excitation light and complex photokinetic events such as reversible photobleaching and photoconversion. We engineered two fluorescent proteins, Clover and mRuby2, which are the brightest green and red fluorescent proteins to date and have the highest Förster radius of any ratiometric FRET pair yet described. Replacement of CFP and YFP with these two proteins in reporters of kinase activity, small GTPase activity and transmembrane voltage significantly improves photostability, FRET dynamic range and emission ratio changes. These improvements enhance detection of transient biochemical events such as neuronal action-potential firing and RhoA activation in growth cones.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Secuencia de Bases , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Proteína de Unión al GTP rhoA/metabolismo , Proteína Fluorescente Roja
9.
Cell ; 150(4): 673-84, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901802

RESUMEN

A pharmacologic approach to male contraception remains a longstanding challenge in medicine. Toward this objective, we explored the spermatogenic effects of a selective small-molecule inhibitor (JQ1) of the bromodomain and extraterminal (BET) subfamily of epigenetic reader proteins. Here, we report potent inhibition of the testis-specific member BRDT, which is essential for chromatin remodeling during spermatogenesis. Biochemical and crystallographic studies confirm that occupancy of the BRDT acetyl-lysine binding pocket by JQ1 prevents recognition of acetylated histone H4. Treatment of mice with JQ1 reduced seminiferous tubule area, testis size, and spermatozoa number and motility without affecting hormone levels. Although JQ1-treated males mate normally, inhibitory effects of JQ1 evident at the spermatocyte and round spermatid stages cause a complete and reversible contraceptive effect. These data establish a new contraceptive that can cross the blood:testis boundary and inhibit bromodomain activity during spermatogenesis, providing a lead compound targeting the male germ cell for contraception.


Asunto(s)
Azepinas/farmacología , Anticonceptivos Masculinos/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Triazoles/farmacología , Animales , Azepinas/química , Barrera Hematotesticular , Anticonceptivos Masculinos/química , Femenino , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/citología , Testículo/efectos de los fármacos , Triazoles/química
10.
Cell ; 146(6): 904-17, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21889194

RESUMEN

MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Mieloma Múltiple/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Antineoplásicos/química , Azepinas/química , Azepinas/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Activación Transcripcional/efectos de los fármacos , Triazoles/química , Triazoles/farmacología
11.
Nature ; 468(7327): 1067-73, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20871596

RESUMEN

Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.


Asunto(s)
Azirinas/farmacología , Dihidropiridinas/farmacología , Modelos Moleculares , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Azirinas/síntesis química , Azirinas/química , Sitios de Unión , Carcinoma de Células Escamosas/fisiopatología , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Dihidropiridinas/síntesis química , Dihidropiridinas/química , Femenino , Humanos , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Neoplasias Cutáneas/fisiopatología , Estereoisomerismo
12.
Chem Biol ; 16(11): 1169-79, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19942140

RESUMEN

Fluorescent proteins have become valuable tools for biomedical research as protein tags, reporters of gene expression, biosensor components, and cell lineage tracers. However, applications of fluorescent proteins for deep tissue imaging in whole mammals have been constrained by the opacity of tissues to excitation light below 600 nm, because of absorbance by hemoglobin. Fluorescent proteins that excite efficiently in the "optical window" above 600 nm are therefore highly desirable. We report here the evolution of far-red fluorescent proteins with peak excitation at 600 nm or above. The brightest one of these, Neptune, performs well in imaging deep tissues in living mice. The crystal structure of Neptune reveals a novel mechanism for red-shifting involving the acquisition of a new hydrogen bond with the acylimine region of the chromophore.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Enlace de Hidrógeno , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Proteína Fluorescente Roja
13.
Nat Methods ; 5(6): 545-51, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18454154

RESUMEN

All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.


Asunto(s)
Biofisica/métodos , Proteínas Luminiscentes/química , Fotoquímica/métodos , Animales , Escherichia coli/metabolismo , Colorantes Fluorescentes/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Luz , Datos de Secuencia Molecular , Mutagénesis , Mutación , Óptica y Fotónica , Fotoblanqueo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA