Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 64, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650010

RESUMEN

Glioblastoma (GBM) remains an untreatable malignant tumor with poor patient outcomes, characterized by palisading necrosis and microvascular proliferation. While single-cell technology made it possible to characterize different lineage of glioma cells into neural progenitor-like (NPC-like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-like) and mesenchymal like (MES-like) states, it does not capture the spatial localization of these tumor cell states. Spatial transcriptomics empowers the study of the spatial organization of different cell types and tumor cell states and allows for the selection of regions of interest to investigate region-specific and cell-type-specific pathways. Here, we obtained paired 10x Chromium single-nuclei RNA-sequencing (snRNA-seq) and 10x Visium spatial transcriptomics data from three GBM patients to interrogate the GBM microenvironment. Integration of the snRNA-seq and spatial transcriptomics data reveals patterns of segregation of tumor cell states. For instance, OPC-like tumor and NPC-like tumor significantly segregate in two of the three samples. Our differentially expressed gene and pathway analyses uncovered significant pathways in functionally relevant niches. Specifically, perinecrotic regions were more immunosuppressive than the endogenous GBM microenvironment, and perivascular regions were more pro-inflammatory. Our gradient analysis suggests that OPC-like tumor cells tend to reside in areas closer to the tumor vasculature compared to tumor necrosis, which may reflect increased oxygen requirements for OPC-like cells. In summary, we characterized the localization of cell types and tumor cell states, the gene expression patterns, and pathways in different niches within the GBM microenvironment. Our results provide further evidence of the segregation of tumor cell states and highlight the immunosuppressive nature of the necrotic and perinecrotic niches in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Transcriptoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
2.
Cancers (Basel) ; 15(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37760589

RESUMEN

Brain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing PDGFRA amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes. Functional assays for pharmacological targets of clemastine revealed that the Emopamil Binding Protein (EBP), an enzyme in the cholesterol biosynthesis pathway, is essential for BTIC propagation and a target that mediates the suppressive effects of clemastine. Finally, we showed that a neural stem cell-derived mouse glioma model displaying predominantly proneural features was similarly susceptible to clemastine treatment. Collectively, these results identify pathways essential for maintaining the stemness and progenitor features of GBMs, uncover BTIC dependency on EBP, and suggest that non-oncology, low-toxicity drugs with OPC differentiation-promoting activity can be repurposed to target GBM stemness and aid in their treatment.

3.
Lancet Child Adolesc Health ; 7(7): 471-478, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37004712

RESUMEN

BACKGROUND: Outcomes of recurrent paediatric high-grade glioma are poor, with a median overall survival of less than 6 months. Viral immunotherapy, such as the polio-rhinovirus chimera lerapolturev, is a novel approach for treatment of recurrent paediatric high-grade glioma and has shown promise in adults with recurrent glioblastoma. The poliovirus receptor CD155 is ubiquitously expressed in malignant paediatric brain tumours and is a treatment target in paediatric high-grade glioma. We aimed to assess the safety of lerapolturev when administered as a single dose intracerebrally by convection enhanced delivery in children and young people with recurrent WHO grade 3 or grade 4 glioma, and to assess overall survival in these patients. METHODS: This phase 1b trial was done at the Duke University Medical Center (Durham, NC, USA). Patients aged 4-21 years with recurrent high-grade malignant glioma (anaplastic astrocytoma, glioblastoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, or anaplastic pleomorphic xanthoastrocytoma) or anaplastic ependymoma, atypical teratoid rhabdoid tumour, or medulloblastoma with infusible disease were eligible for this study. A catheter was tunnelled beneath the scalp for a distance of at least 5 cm to aid in prevention of infection. The next day, lerapolturev at a dose of 5 × 107 median tissue culture infectious dose in 3 mL infusate loaded in a syringe was administered via a pump at a rate of 0·5 mL per h as a one-time dose. The infusion time was approximately 6·5 h to compensate for volume of the tubing. The primary endpoint was the proportion of patients with unacceptable toxic effects during the 14-day period after lerapolturev treatment. The study is registered with ClinicalTrials.gov, NCT03043391. FINDINGS: Between Dec 5, 2017, and May 12, 2021, 12 patients (11 unique patients) were enrolled in the trial. Eight patients were treated with lerapolturev. The median patient age was 16·5 years (IQR 11·0-18·0), five (63%) of eight patients were male and three (38%) were female, and six (75%) of eight patients were White and two (25%) were Black or African American. The median number of previous chemotherapeutic regimens was 3·50 (IQR 1·25-5·00). Six of eight patients had 26 treatment-related adverse events attributable to lerapolturev. There were no irreversible (ie, persisted longer than 2 weeks) treatment-related grade 4 adverse events or deaths. Treatment-related grade 3 adverse events included headaches in two patients and seizure in one patient. Four patients received low-dose bevacizumab on-study for treatment-related peritumoural inflammation or oedema, diagnosed by both clinical symptoms plus fluid-attenuated inversion recovery MRI. The median overall survival was 4·1 months (95% CI 1·2-10·1). One patient remains alive after 22 months. INTERPRETATION: Convection enhanced delivery of lerapolturev is safe enough in the treatment of recurrent paediatric high-grade glioma to proceed to the next phase of trial. FUNDING: Solving Kids Cancer, B+ Foundation, Musella Foundation, and National Institutes of Health.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioblastoma , Glioma , Poliomielitis , Adulto , Humanos , Niño , Masculino , Femenino , Adolescente , Rhinovirus , Recurrencia Local de Neoplasia/terapia , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Inmunoterapia
4.
Sci Transl Med ; 15(682): eabn5649, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753564

RESUMEN

D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Inmunotoxinas , Humanos , Animales , Ratones , Glioblastoma/patología , Inmunotoxinas/genética , Linfocitos T CD8-positivos , Inmunidad Adaptativa , Receptores ErbB/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/terapia
5.
Neuro Oncol ; 25(9): 1563-1575, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36689342

RESUMEN

BACKGROUND: Telomere maintenance mechanisms are required to enable the replicative immortality of malignant cells. While most cancers activate the enzyme telomerase, a subset of cancers uses telomerase-independent mechanisms termed alternative lengthening of telomeres (ALT). ALT occurs via homology-directed-repair mechanisms and is frequently associated with ATRX mutations. We previously showed that a subset of adult glioblastoma (GBM) patients with ATRX-expressing ALT-positive tumors harbored loss-of-function mutations in the SMARCAL1 gene, which encodes an annealing helicase involved in replication fork remodeling and the resolution of replication stress. However, the causative relationship between SMARCAL1 deficiency, tumorigenesis, and de novo telomere synthesis is not understood. METHODS: We used a patient-derived ALT-positive GBM cell line with native SMARCAL1 deficiency to investigate the role of SMARCAL1 in ALT-mediated de novo telomere synthesis, replication stress, and gliomagenesis in vivo. RESULTS: Inducible rescue of SMARCAL1 expression suppresses ALT indicators and inhibits de novo telomere synthesis in GBM and osteosarcoma cells, suggesting that SMARCAL1 deficiency plays a functional role in ALT induction in cancers that natively lack SMARCAL1 function. SMARCAL1-deficient ALT-positive cells can be serially propagated in vivo in the absence of detectable telomerase activity, demonstrating that the SMARCAL1-deficient ALT phenotype maintains telomeres in a manner that promotes tumorigenesis. CONCLUSIONS: SMARCAL1 deficiency is permissive to ALT and promotes gliomagenesis. Inducible rescue of SMARCAL1 in ALT-positive cell lines permits the dynamic modulation of ALT activity, which will be valuable for future studies aimed at understanding the mechanisms of ALT and identifying novel anticancer therapeutics that target the ALT phenotype.


Asunto(s)
Glioblastoma , Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Glioblastoma/genética , Homeostasis del Telómero , Mutación , Telómero/genética , Telómero/metabolismo , Carcinogénesis , Transformación Celular Neoplásica/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo
7.
Clin Transl Oncol ; 25(3): 696-705, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36301489

RESUMEN

BACKGROUND: Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. METHODS: PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. RESULTS AND DISCUSSION: PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. CONCLUSIONS: CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Poliovirus , Humanos , Niño , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Poliovirus/metabolismo , ARN Mensajero/metabolismo
8.
Neurooncol Pract ; 9(4): 317-327, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35859542

RESUMEN

Background: The Central Brain Tumor Registry of the United States (CBTRUS) uses a histology grouping model based on the World Health Organization (WHO) classifications to group records for clinically relevant statistical reporting. Newly identified genetic markers more accurately stratify patients than histology alone and were incorporated into the 2016 update to the WHO Classification. Methods: CBTRUS and consulting neuropathologists reviewed and aligned histology groupings with the 2016 WHO update. "Obsolete" (terms not currently in use) histology nomenclature along with their International Classification of Disease, Oncology 3rd edition (ICD-O-3) codes were identified, some histologies were reclassified to 2016 WHO, and new codes found in 2016 WHO were incorporated. An evaluation of the frequency of histology codes affected in the realignment process, and incidence and survival pre- and post-realignment was conducted. Results: After review, 67 codes were noted as obsolete, 51 codes were reclassified, and 12 new codes were incorporated. Histology groups most affected were mesenchymal tumors and neuronal/mixed neuronal-glial tumors. Reorganization resulted in 2588 (0.65%) cases with grouping reassignment or reporting change, indicating that the 2016 WHO Classification revision has impacted the collection and reporting of primary brain and other CNS tumors. Conclusion: This work demonstrates the need to be responsive to changes in classification and coding in order to ensure the most up-to-date and accurate statistics for brain and CNS tumors. This will require collaboration from all stakeholders within the brain tumor community, so to have the ability to reconcile clinical practices and surveillance requirements.

9.
Neuro Oncol ; 24(11): 1989-2000, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35460555

RESUMEN

BACKGROUND: Selected molecular biomarkers were incorporated into the US cancer registry reporting for patients with brain tumors beginning in 2018. We investigated the completeness and validity of these variables and described the epidemiology of molecularly defined brain tumor types. METHODS: Brain tumor patients with histopathologically confirmed diagnosis in 2018 were identified within the Central Brain Tumor Registry of the United States and NCI's Surveillance, Epidemiology, and End Results Incidence databases. The brain molecular markers (BMM) site-specific data item was assessed for coding completeness and validity. 1p/19q status, MGMT promoter methylation, WHO grade data items, and new ICD-O-3 codes were additionally evaluated. These data were used to profile the characteristics and age-adjusted incidence rates per 100 000 population of molecularly defined brain tumors with 95% confidence intervals (95% CI). RESULTS: BMM completeness across the applicable tumor types was 75%-92% and demonstrated favorable coding validity. IDH-wildtype glioblastomas' incidence rate was 1.74 (95% CI: 1.69-1.78), as compared to 0.14 for WHO grade 2 (95% CI: 0.12-0.15), 0.15 for grade 3 (95% CI: 0.14-0.16), and 0.07 for grade 4 (95% CI: 0.06-0.08) IDH-mutant astrocytomas. Irrespective of WHO grade, IDH mutation prevalence was highest in adolescent and young adult patients, and IDH-mutant astrocytomas were more frequently MGMT promoter methylated. Among pediatric-type tumors, the incidence rate was 0.06 for H3K27M-mutant diffuse midline gliomas (95% CI: 0.05-0.07), 0.03 for SHH-activated/TP53-wildtype medulloblastomas (95% CI: 0.02-0.03), and <0.01 for both C19MC-altered embryonal tumor with multilayered rosettes and RELA-fusion ependymomas. CONCLUSIONS: Our findings illustrate the success of developing a dedicated, integrated diagnosis variable, which provides critical molecular information about brain tumors related to accurate diagnosis.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto Joven , Adolescente , Niño , Humanos , Estados Unidos , Neoplasias Encefálicas/patología , Glioma/patología , Biomarcadores , Isocitrato Deshidrogenasa/genética , Mutación
10.
Hematol Oncol Clin North Am ; 36(1): 1-21, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34763992

RESUMEN

In 2016, the World Health Organization Classification of CNS Tumors introduced molecular abnormalities that refined tumor diagnoses. Around this time, the introduction of large scale genetic mutational analyses quickly advanced our knowledge of recurrent abnormalities in disease. In 2017, the C-IMPACT group was established to render expert consensus opinions regarding the application of molecular findings into central nervous system tumor diagnoses. C-IMPACT have presented their recommendations in 7 peer-reviewed publications; this article details those recommendations that are expected to be incorporated into the upcoming fifth edition of the World Health Organization classification.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Recurrencia Local de Neoplasia , Neoplasias del Sistema Nervioso Central/genética , Humanos , Organización Mundial de la Salud
11.
Clin Cancer Res ; 27(24): 6800-6814, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34593527

RESUMEN

PURPOSE: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2'-deoxyguanosine (THIO) in gliomas both in vitro and in vivo. EXPERIMENTAL DESIGN: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO. Four patient-derived xenografts (PDX), two patient-derived organoids (PDO), and two xenografts of human glioma cell lines were used to further investigate the therapeutic efficacy of THIO. RESULTS: THIO was effective in the majority of human and mouse glioma cell lines with no obvious toxicity against normal astrocytes. THIO as a monotherapy demonstrated efficacy in three glioma cell lines that had acquired resistance to temozolomide. In addition, THIO showed efficacy in four human glioma cell lines grown as neurospheres by inducing apoptotic cell death. Mechanistically, THIO induced telomeric DNA damage not only in glioma cell lines but also in PDX tumor specimens. Integrated computational analyses of transcriptomic and proteomic data indicated that THIO significantly inhibited cell invasion, stem cell, and proliferation pathways while triggering DNA damage and apoptosis. Importantly, THIO significantly decreased tumor proliferation in two PDO models and reduced the tumor size of a glioblastoma xenograft and a PDX model. CONCLUSIONS: The current study established the therapeutic role of THIO in primary and recurrent gliomas and revealed the acute induction of telomeric DNA damage as a primary antitumor mechanism of THIO in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Desoxiguanosina/análogos & derivados , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Humanos , Ratones , Nucleósidos/uso terapéutico , Proteómica , Tionucleósidos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Acta Neuropathol ; 142(5): 859-871, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34409497

RESUMEN

Medulloblastoma, a common pediatric malignant central nervous system tumour, represent a small proportion of brain tumours in adults. Previously it has been shown that in adults, Sonic Hedgehog (SHH)-activated tumours predominate, with Wingless-type (WNT) and Group 4 being less common, but molecular risk stratification remains a challenge. We performed an integrated analysis consisting of genome-wide methylation profiling, copy number profiling, somatic nucleotide variants and correlation of clinical variables across a cohort of 191 adult medulloblastoma cases identified through the Medulloblastoma Advanced Genomics International Consortium. We identified 30 WNT, 112 SHH, 6 Group 3, and 41 Group 4 tumours. Patients with SHH tumours were significantly older at diagnosis compared to other subgroups (p < 0.0001). Five-year progression-free survival (PFS) for WNT, SHH, Group 3, and Group 4 tumours was 64.4 (48.0-86.5), 61.9% (51.6-74.2), 80.0% (95% CI 51.6-100.0), and 44.9% (95% CI 28.6-70.7), respectively (p = 0.06). None of the clinical variables (age, sex, metastatic status, extent of resection, chemotherapy, radiotherapy) were associated with subgroup-specific PFS. Survival among patients with SHH tumours was significantly worse for cases with chromosome 3p loss (HR 2.9, 95% CI 1.1-7.6; p = 0.02), chromosome 10q loss (HR 4.6, 95% CI 2.3-9.4; p < 0.0001), chromosome 17p loss (HR 2.3, 95% CI 1.1-4.8; p = 0.02), and PTCH1 mutations (HR 2.6, 95% CI 1.1-6.2; p = 0.04). The prognostic significance of 3p loss and 10q loss persisted in multivariable regression models. For Group 4 tumours, chromosome 8 loss was strongly associated with improved survival, which was validated in a non-overlapping cohort (combined cohort HR 0.2, 95% CI 0.1-0.7; p = 0.007). Unlike in pediatric medulloblastoma, whole chromosome 11 loss in Group 4 and chromosome 14q loss in SHH was not associated with improved survival, where MYCN, GLI2 and MYC amplification were rare. In sum, we report unique subgroup-specific cytogenetic features of adult medulloblastoma, which are distinct from those in younger patients, and correlate with survival disparities. Our findings suggest that clinical trials that incorporate new strategies tailored to high-risk adult medulloblastoma patients are urgently needed.


Asunto(s)
Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Adolescente , Adulto , Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/patología , Supervivencia sin Progresión , Factores de Riesgo , Adulto Joven
15.
Neuro Oncol ; 23(8): 1360-1370, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33580238

RESUMEN

BACKGROUND: Within PF-EPN-A, 1q gain is a marker of poor prognosis, however, it is unclear if within PF-EPN-A additional cytogenetic events exist which can refine risk stratification. METHODS: Five independent non-overlapping cohorts of PF-EPN-A were analyzed applying genome-wide methylation arrays for chromosomal and clinical variables predictive of survival. RESULTS: Across all cohorts, 663 PF-EPN-A were identified. The most common broad copy number event was 1q gain (18.9%), followed by 6q loss (8.6%), 9p gain (6.5%), and 22q loss (6.8%). Within 1q gain tumors, there was significant enrichment for 6q loss (17.7%), 10q loss (16.9%), and 16q loss (15.3%). The 5-year progression-free survival (PFS) was strikingly worse in those patients with 6q loss, with a 5-year PFS of 50% (95% CI 45%-55%) for balanced tumors, compared with 32% (95% CI 24%-44%) for 1q gain only, 7.3% (95% CI 2.0%-27%) for 6q loss only and 0 for both 1q gain and 6q loss (P = 1.65 × 10-13). After accounting for treatment, 6q loss remained the most significant independent predictor of survival in PF-EPN-A but is not in PF-EPN-B. Distant relapses were more common in 1q gain irrespective of 6q loss. RNA sequencing comparing 6q loss to 6q balanced PF-EPN-A suggests that 6q loss forms a biologically distinct group. CONCLUSIONS: We have identified an ultra high-risk PF-EPN-A ependymoma subgroup, which can be reliably ascertained using cytogenetic markers in routine clinical use. A change in treatment paradigm is urgently needed for this particular subset of PF-EPN-A where novel therapies should be prioritized for upfront therapy.


Asunto(s)
Ependimoma , Aberraciones Cromosómicas , Cromosomas , Ependimoma/genética , Humanos , Análisis por Micromatrices , Supervivencia sin Progresión
16.
J Clin Oncol ; 39(7): 807-821, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502920

RESUMEN

PURPOSE: We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors. METHODS: Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing. RESULTS: A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms. CONCLUSION: Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/genética , Metilación de ADN , Meduloblastoma/genética , Recurrencia Local de Neoplasia , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/terapia , Niño , Preescolar , Ensayos Clínicos como Asunto , Progresión de la Enfermedad , Epigenoma , Epigenómica , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/secundario , Meduloblastoma/terapia , Retratamiento , Factores de Tiempo , Resultado del Tratamiento
17.
Nat Commun ; 12(1): 352, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441554

RESUMEN

Several immunotherapy clinical trials in recurrent glioblastoma have reported long-term survival benefits in 10-20% of patients. Here we perform genomic analysis of tumor tissue from recurrent WHO grade IV glioblastoma patients acquired prior to immunotherapy intervention. We report that very low tumor mutation burden is associated with longer survival after recombinant polio virotherapy or after immune checkpoint blockade in recurrent glioblastoma patients. A relationship between tumor mutation burden and survival is not observed in cohorts of immunotherapy naïve newly diagnosed or recurrent glioblastoma patients. Transcriptomic analyses reveal an inverse relationship between tumor mutation burden and enrichment of inflammatory gene signatures in cohorts of recurrent, but not newly diagnosed glioblastoma tumors, implying that a relationship between tumor mutation burden and tumor-intrinsic inflammation evolves upon recurrence.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunoterapia/métodos , Mutación , Viroterapia Oncolítica/métodos , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios de Cohortes , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Inflamación/genética , Recurrencia Local de Neoplasia , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
18.
Cell Rep Med ; 1(3)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32743560

RESUMEN

Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adolescente , Biomarcadores de Tumor/metabolismo , Niño , Ciclofosfamida/uso terapéutico , Femenino , Humanos , Ifosfamida/uso terapéutico , Masculino , Meduloblastoma/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Supervivencia sin Progresión
19.
Nat Commun ; 11(1): 3077, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555164

RESUMEN

Brainstem gliomas are a heterogeneous group of tumors that encompass both benign tumors cured with surgical resection and highly lethal cancers with no efficacious therapies. We perform a comprehensive study incorporating epigenetic and genomic analyses on a large cohort of brainstem gliomas, including Diffuse Intrinsic Pontine Gliomas. Here we report, from DNA methylation data, distinct clusters termed H3-Pons, H3-Medulla, IDH, and PA-like, each associated with unique genomic and clinical profiles. The majority of tumors within H3-Pons and-H3-Medulla harbors H3F3A mutations but shows distinct methylation patterns that correlate with anatomical localization within the pons or medulla, respectively. Clinical data show significantly different overall survival between these clusters, and pathway analysis demonstrates different oncogenic mechanisms in these samples. Our findings indicate that the integration of genetic and epigenetic data can facilitate better understanding of brainstem gliomagenesis and classification, and guide future studies for the development of novel treatments for this disease.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Epigenoma , Glioma/genética , Adolescente , Adulto , Neoplasias del Tronco Encefálico/mortalidad , Niño , Preescolar , Análisis por Conglomerados , Metilación de ADN , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genómica , Glioma/mortalidad , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Clin Cancer Res ; 26(5): 1141-1151, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31744830

RESUMEN

PURPOSE: Although pituitary adenoma is classified as benign, Cushing disease is associated with significant morbidity due to the numerous sequelae of elevated cortisol levels. Successful therapy for Cushing disease remains elusive due to high rates of treatment-refractory recurrence. The frequent emergence of lymphocytic hypophysitis following checkpoint blockade for other cancers, as well as the expression of PD-L1 on pituitary adenomas, suggest a role for immunotherapy. EXPERIMENTAL DESIGN: This study confirms PD-L1 expression on functioning pituitary adenomas and is the first to evaluate the efficacy of checkpoint blockade (anti-PD-L1) therapy in a preclinical model of Cushing disease. RESULTS: Herein, treatment with anti-PD-L1 was successful in reducing adrenocorticotropic hormone plasma levels, decreasing tumor growth, and increasing survival in our model. Furthermore, tumor-infiltrating T cells demonstrated a pattern of checkpoint expression similar to other checkpoint blockade-susceptible tumors. CONCLUSIONS: This suggests that immunotherapy, particularly blockade of the PD1/PD-L1 axis, may be a novel therapeutic option for refractory Cushing disease. Clinical investigation is encouraged.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Neoplasias Hipofisarias/tratamiento farmacológico , Linfocitos T/inmunología , Adenoma/tratamiento farmacológico , Adenoma/inmunología , Adenoma/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/inmunología , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Neoplasias Hipofisarias/inmunología , Neoplasias Hipofisarias/patología , Tasa de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA