RESUMEN
Pituitary neuroendocrine tumour Ki-67 proliferation index varies according to the number of tumour cells assessed. Consistent Ki-67 scoring approaches and re-evaluation of the recommended Ki-67 3% cut-off are required to clarify controversies in pituitary neuroendocrine tumour Ki-67 proliferation index assessment.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human malignancies. Tissue microarrays (TMA) are an established method of high throughput biomarker interrogation in tissues but may not capture histological features of cancer with potential biological relevance. Topographic TMAs (T-TMAs) representing pathophysiological hallmarks of cancer were constructed from representative, retrospective PDAC diagnostic material, including 72 individual core tissue samples. The T-TMA was interrogated with tissue hybridization-based experiments to confirm the accuracy of the topographic sampling, expression of pro-tumourigenic and immune mediators of cancer, totalling more than 750 individual biomarker analyses. A custom designed Next Generation Sequencing (NGS) panel and a spatial distribution-specific transcriptomic evaluation were also employed. The morphological choice of the pathophysiological hallmarks of cancer was confirmed by protein-specific expression. Quantitative analysis identified topography-specific patterns of expression in the IDO/TGF-ß axis; with a heterogeneous relationship of inflammation and desmoplasia across hallmark areas and a general but variable protein and gene expression of c-MET. NGS results highlighted underlying genetic heterogeneity within samples, which may have a confounding influence on the expression of a particular biomarker. T-TMAs, integrated with quantitative biomarker digital scoring, are useful tools to identify hallmark specific expression of biomarkers in pancreatic cancer.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Análisis de Matrices Tisulares , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudios Retrospectivos , Transcriptoma , Masculino , Femenino , Persona de Mediana Edad , AncianoRESUMEN
BACKGROUND: Small bowel adenocarcinoma (SBA) is a rare malignancy of the small intestine associated with late stage diagnosis and poor survival outcome. High expression of immune cells and immune checkpoint biomarkers especially programmed cell death ligand-1 (PD-L1) have been shown to significantly impact disease progression. We have analysed the expression of a subset of immune cell and immune checkpoint biomarkers in a cohort of SBA patients and assessed their impact on progression-free survival (PFS) and overall survival (OS). METHODS: 25 patient samples in the form of formalin fixed, paraffin embedded (FFPE) tissue were obtained in tissue microarray (TMAs) format. Automated immunohistochemistry (IHC) staining was performed using validated antibodies for CD3, CD4, CD8, CD68, PD-L1, ICOS, IDO1 and LAG3. Slides were scanned digitally and assessed in QuPath, an open source image analysis software, for biomarker density and percentage positivity. Survival analyses were carried out using the Kaplan Meier method. RESULTS: Varying expressions of biomarkers were recorded. High expressions of CD3, CD4 and IDO1 were significant for PFS (p = 0.043, 0.020 and 0.018 respectively). High expression of ICOS was significant for both PFS (p = 0.040) and OS (p = 0.041), while high PD-L1 expression in tumour cells was significant for OS (p = 0.033). High correlation was observed between PD-L1 and IDO1 expressions (Pearson correlation co-efficient = 1) and subsequently high IDO1 expression in tumour cells was found to be significant for PFS (p = 0.006) and OS (p = 0.034). CONCLUSIONS: High levels of immune cells and immune checkpoint proteins have a significant impact on patient survival in SBA. These data could provide an insight into the immunotherapeutic management of patients with SBA.
Asunto(s)
Adenocarcinoma , Neoplasias Duodenales , Humanos , Antígeno B7-H1/metabolismo , Adenocarcinoma/patología , Análisis de Supervivencia , Neoplasias Duodenales/patología , Biomarcadores de Tumor/metabolismo , Intestino Delgado/metabolismo , Pronóstico , Linfocitos Infiltrantes de Tumor , Microambiente TumoralRESUMEN
Limited evidence exists on the impact of spatial and temporal heterogeneity of high-grade serous ovarian cancer (HGSOC) on tumor evolution, clinical outcomes, and surgical operability. We perform systematic multi-site tumor mapping at presentation and matched relapse from 49 high-tumor-burden patients, operated up front. From SNP array-derived copy-number data, we categorize dendrograms representing tumor clonal evolution as sympodial or dichotomous, noting most chemo-resistant patients favor simpler sympodial evolution. Three distinct tumor evolutionary patterns from primary to relapse are identified, demonstrating recurrent disease may emerge from pre-existing or newly detected clones. Crucially, we identify spatial heterogeneity for clinically actionable homologous recombination deficiency scores and for poor prognosis biomarkers CCNE1 and MYC. Copy-number signature, phenotypic, proteomic, and proliferative-index heterogeneity further highlight HGSOC complexity. This study explores HGSOC evolution and dissemination across space and time, its impact on optimal surgical cytoreductive effort and clinical outcomes, and its consequences for clinical decision-making.
Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/patología , Proteómica , Recurrencia Local de Neoplasia/genéticaRESUMEN
Prostate cancer is often treated by perturbing androgen receptor signalling. CACNA1D, encoding CaV1.3 ion channels is upregulated in prostate cancer. Here we show how hormone therapy affects CACNA1D expression and CaV1.3 function. Human prostate cells (LNCaP, VCaP, C4-2B, normal RWPE-1) and a tissue microarray were used. Cells were treated with anti-androgen drug, Enzalutamide (ENZ) or androgen-removal from media, mimicking androgen-deprivation therapy (ADT). Proliferation assays, qPCR, Western blot, immunofluorescence, Ca2+-imaging and patch-clamp electrophysiology were performed. Nifedipine, Bay K 8644 (CaV1.3 inhibitor, activator), mibefradil, Ni2+ (CaV3.2 inhibitors) and high K+ depolarising solution were employed. CACNA1D and CaV1.3 protein are overexpressed in prostate tumours and CACNA1D was overexpressed in androgen-sensitive prostate cancer cells. In LNCaP, ADT or ENZ increased CACNA1D time-dependently whereas total protein showed little change. Untreated LNCaP were unresponsive to depolarising high K+/Bay K (to activate CaV1.3); moreover, currents were rarely detected. ADT or ENZ-treated LNCaP exhibited nifedipine-sensitive Ca2+-transients; ADT-treated LNCaP exhibited mibefradil-sensitive or, occasionally, nifedipine-sensitive inward currents. CACNA1D knockdown reduced the subpopulation of treated-LNCaP with CaV1.3 activity. VCaP displayed nifedipine-sensitive high K+/Bay K transients (responding subpopulation was increased by ENZ), and Ni2+-sensitive currents. Hormone therapy enables depolarization/Bay K-evoked Ca2+-transients and detection of CaV1.3 and CaV3.2 currents. Physiological and genomic CACNA1D/CaV1.3 mechanisms are likely active during hormone therapy-their modulation may offer therapeutic advantage.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Andrógenos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Nifedipino/farmacología , Mibefradil/farmacología , Línea Celular Tumoral , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Canales de Calcio Tipo L/genéticaRESUMEN
Interrogation of immune response in autopsy material from patients with SARS-CoV-2 is potentially significant. We aim to describe a validated protocol for the exploration of the molecular physiopathology of SARS-CoV-2 pulmonary disease using multiplex immunofluorescence (mIF).The application of validated assays for the detection of SARS-CoV-2 in tissues, originally developed in our laboratory in the context of oncology, was used to map the topography and complexity of the adaptive immune response at protein and mRNA levels.SARS-CoV-2 is detectable in situ by protein or mRNA, with a sensitivity that could be in part related to disease stage. In formalin-fixed, paraffin-embedded pneumonia material, multiplex immunofluorescent panels are robust, reliable and quantifiable and can detect topographic variations in inflammation related to pathological processes.Clinical autopsies have relevance in understanding diseases of unknown/complex pathophysiology. In particular, autopsy materials are suitable for the detection of SARS-CoV-2 and for the topographic description of the complex tissue-based immune response using mIF.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/patología , SARS-CoV-2 , Autopsia , Pulmón/patología , Prueba de COVID-19RESUMEN
Background and Aims: The observed increase in the incidence of early-onset colorectal cancer (EOCRC) is being driven by sporadic cases, but the molecular characteristics of these tumors are not fully understood. Our objective was to investigate the prevalence of microsatellite instability (MSI) and selected mutations in sporadic EOCRC, and their association with survival. Methods: Firstly, we compared the prevalence of molecular characteristics and survival within a population-based cohort study of 652 stage II and III colon cancer patients in Northern Ireland, comparing sporadic early-onset (<50 years, n = 35) with older (60-69 years, n = 179) patients. Secondly, a systematic review for studies reporting the prevalence of MSI, mismatch repair deficiency (dMMR), or BRAF, KRAS, NRAS, PIK3CA, and TP53 mutations in sporadic EOCRC was conducted. A meta-analysis was performed to calculate pooled estimates of the prevalence of molecular features in sporadic EOCRC. Results: Firstly, within the cohort study, EOCRC patients did not have a significantly increased risk of colorectal cancer-specific death (adjusted hazard ratio 1.20; 95% confidence interval [CI] 0.61-2.39) compared with 60- to 69-year-olds. Second, 32 studies were included in the systematic review. The pooled analysis estimated a prevalence of 10% (95% CI 7%-14%) for MSI high/dMMR in sporadic EOCRC. BRAF and KRAS mutations had a prevalence of 1% (95% CI 0%-3%) and 32% (95% CI 23%-40%), respectively. Conclusion: The molecular characteristics of sporadic EOCRC differ from those of cancers in older adults, particularly regarding reduced prevalence of BRAF mutations. Ten percent of sporadic EOCRC display MSI high/dMMR. Further studies are needed to address survival in sporadic EOCRC cases and whether molecular profiles influence EOCRC outcomes in this patient group.
RESUMEN
Clinical trials for MET inhibitors have demonstrated limited success for their use in colon cancer (CC). However, clinical efficacy may be obscured by a lack of standardisation in MET assessment for patient stratification. In this study, we aimed to determine the molecular context in which MET is deregulated in CC using a series of genomic and proteomic tests to define MET expression and identify patient subgroups that should be considered in future studies with MET-targeted agents. To this aim, orthogonal expression analysis of MET was conducted in a population-representative cohort of stage II/III CC patients (n = 240) diagnosed in Northern Ireland from 2004 to 2008. Targeted sequencing was used to determine the relative incidence of MET R970C and MET T992I mutations within the cohort. MET amplification was assessed using dual-colour dual-hapten brightfield in situ hybridisation (DDISH). Expression of transcribed MET and c-MET protein within the cohort was assessed using digital image analysis on MET RNA in situ hybridisation (ISH) and c-MET immunohistochemistry (IHC) stained slides. We found that less than 2% of the stage II/III CC patient population assessed demonstrated a genetic MET aberration. Determination of a high MET RNA-ISH/low c-MET IHC protein subgroup was found to be associated with poor 5-year cancer-specific outcomes compared to patients with concordant MET RNA-ISH and c-MET IHC protein expression (HR 2.12 [95%CI: 1.27-3.68]). The MET RNA-ISH/c-MET IHC protein biomarker paradigm identified in this study demonstrates that subtyping of MET expression may be required to identify MET-addicted malignancies in CC patients who will truly benefit from MET inhibition.
Asunto(s)
Neoplasias del Colon , Proteómica , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/genética , Humanos , Inmunohistoquímica , PronósticoRESUMEN
STING signaling in cancer is a crucial component of response to immunotherapy and other anti-cancer treatments. Currently, there is no robust method of measuring STING activation in cancer. Here, we describe an immunohistochemistry-based assay with digital pathology assessment of STING in tumor cells. Using this novel approach in estrogen receptor-positive (ER+) and ER- breast cancer, we identify perinuclear-localized expression of STING (pnSTING) in ER+ cases as an independent predictor of good prognosis, associated with immune cell infiltration and upregulation of immune checkpoints. Tumors with low pnSTING are immunosuppressed with increased infiltration of "M2"-polarized macrophages. In ER- disease, pnSTING does not appear to have a significant prognostic role with STING uncoupled from interferon responses. Importantly, a gene signature defining low pnSTING expression is predictive of poor prognosis in independent ER+ datasets. Low pnSTING is associated with chromosomal instability, MYC amplification and mTOR signaling, suggesting novel therapeutic approaches for this subgroup.
RESUMEN
Identifying robust predictive biomarkers to stratify colorectal cancer (CRC) patients based on their response to immune-checkpoint therapy is an area of unmet clinical need. Our evolutionary algorithm Atlas Correlation Explorer (ACE) represents a novel approach for mining The Cancer Genome Atlas (TCGA) data for clinically relevant associations. We deployed ACE to identify candidate predictive biomarkers of response to immune-checkpoint therapy in CRC. We interrogated the colon adenocarcinoma (COAD) gene expression data across nine immune-checkpoints (PDL1, PDCD1, CTLA4, LAG3, TIM3, TIGIT, ICOS, IDO1 and BTLA). IL2RB was identified as the most common gene associated with immune-checkpoint genes in CRC. Using human/murine single-cell RNA-seq data, we demonstrated that IL2RB was expressed predominantly in a subset of T-cells associated with increased immune-checkpoint expression (P < 0.0001). Confirmatory IL2RB immunohistochemistry (IHC) analysis in a large MSI-H colon cancer tissue microarray (TMA; n = 115) revealed sensitive, specific staining of a subset of lymphocytes and a strong association with FOXP3+ lymphocytes (P < 0.0001). IL2RB mRNA positively correlated with three previously-published gene signatures of response to immune-checkpoint therapy (P < 0.0001). Our evolutionary algorithm has identified IL2RB to be extensively linked to immune-checkpoints in CRC; its expression should be investigated for clinical utility as a potential predictive biomarker for CRC patients receiving immune-checkpoint blockade.
RESUMEN
Introduction: Best practices dictate that biobanks ensure accurate determination of tumor content before supplying formalin-fixed, paraffin-embedded (FFPE) tissue samples to researchers for nucleic acid extraction and downstream molecular testing. It is advisable that trained and competent individuals, who understand the requirements of the downstream molecular tests, perform the microscopic morphological examination. However, the special skills, time, and costs associated with these assessments can be prohibitive, especially in large case cohorts requiring extensive pathological review. Determination of tumor content reliably by digital image analysis (DIA) could represent a significant advantage if validated, utilized, and deployed by biobanks. Materials and Methods: Whole slide digital scanned images of colorectal, lung, and breast cancer specimens were created. The scanned images were imported into the DIA software QuPath and digital annotations were completed by biobank technicians, under the direction of trained histopathology senior scientists. Automated cell detection was conducted and tumor epithelial cells were classified and quantified. Results: DIA scores were highly concordant with the manual assessment for 376 of 435 samples (86%). A detailed review of discordant cases indicated digital scores had a higher accuracy than the manual estimation. Conclusion: Automated digital quantification has the potential to replace visual estimations with reduced subjectivity and increased reliability compared with manual tumor estimations. We recommend the use of DIA by biobanks involved in provision of FFPE tissue samples, especially in large research studies requiring high volumes of cases to be analyzed.
Asunto(s)
Neoplasias , Programas Informáticos , Formaldehído , Humanos , Adhesión en Parafina , Reproducibilidad de los ResultadosRESUMEN
AIMS: Establishing the mismatch repair (MMR) status of colorectal cancers is important to enable the detection of underlying Lynch syndrome and inform prognosis and therapy. Current testing typically involves either polymerase chain reaction (PCR)-based microsatellite instability (MSI) testing or MMR protein immunohistochemistry (IHC). The aim of this study was to compare these two approaches in a large, population-based cohort of stage 2 and 3 colon cancer cases in Northern Ireland. METHODS AND RESULTS: The study used the Promega pentaplex assay to determine MSI status and a four-antibody MMR IHC panel. IHC was applied to tumour tissue microarrays with triplicate tumour sampling, and assessed manually. Of 593 cases with available MSI and MMR IHC results, 136 (22.9%) were MSI-high (MSI-H) and 135 (22.8%) showed abnormal MMR IHC. Concordance was extremely high, with 97.1% of MSI-H cases showing abnormal MMR IHC, and 97.8% of cases with abnormal IHC showing MSI-H status. Under-representation of tumour epithelial cells in samples from heavily inflamed tumours resulted in misclassification of several cases with abnormal MMR IHC as microsatellite-stable. MMR IHC revealed rare cases with unusual patterns of MMR protein expression, unusual combinations of expression loss, or secondary clonal loss of expression, as further illustrated by repeat immunostaining on whole tissue sections. CONCLUSIONS: MSI PCR testing and MMR IHC can be considered to be equally proficient tests for establishing MMR/MSI status, when there is awareness of the potential pitfalls of either method. The choice of methodology may depend on available services and expertise.
Asunto(s)
Neoplasias del Colon , Inmunohistoquímica/métodos , Reacción en Cadena de la Polimerasa/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Colon/patología , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/epidemiología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación de la Incompatibilidad de ADN , Femenino , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Pronóstico , Sensibilidad y EspecificidadRESUMEN
Multiplex immunofluorescence (mIF) and digital image analysis (DIA) have transformed the ability to analyse multiple biomarkers. We aimed to validate a clinical workflow for quantifying PD-L1 in non-small cell lung cancer (NSCLC). NSCLC samples were stained with a validated mIF panel. Immunohistochemistry (IHC) was conducted and mIF slides were scanned on an Akoya Vectra Polaris. Scans underwent DIA using QuPath. Single channel immunofluorescence was concordant with single-plex IHC. DIA facilitated quantification of cell types expressing single or multiple phenotypic markers. Considerations for analysis included classifier accuracy, macrophage infiltration, spurious staining, threshold sensitivity by DIA, sensitivity of cell identification in the mIF. Alternative sequential detection of biomarkers by DIA potentially impacted final score. Strong concordance was observed between 3,3'-Diaminobenzidine (DAB) IHC slides and mIF slides (R2 = 0.7323). Comparatively, DIA on DAB IHC was seen to overestimate the PD-L1 score more frequently than on mIF slides. Overall, concordance between DIA on DAB IHC slides and mIF slides was 95%. DIA of mIF slides is rapid, highly comparable to DIA on DAB IHC slides, and enables comprehensive extraction of phenotypic data and specific microenvironmental detail intrinsic to the sample. Exploration of the clinical relevance of mIF in the context of immunotherapy treated cases is warranted.
RESUMEN
AIMS: Ki67 proliferative index (PI) is essential for grading gastroenteric and pancreatic neuroendocrine tumours (GEP NETs). Analytical and preanalytical variables can affect Ki67 PI. In contrast to counting methodology, until now little attention has focused on the question of clone equivalence and the effect of hot-spot size on Ki67 PI in GEP NETs. Using manual counting and image analysis, this study compared the Ki67 PI achieved using MM1, K2 and 30-9 to MIB1, a clone which has been validated for, and is referenced in, guidelines relating to assessment of Ki67 PI in GEP NETs. METHODS AND RESULTS: Forty-two pancreatic NETs were each immunohistochemically stained for the anti-Ki67 clones MIB1, MM1, K2 and 30-9. Ki67 PI was calculated manually and by image analysis, the latter using three different hot-spot sizes. In manual comparisons using single hot-spot high-power fields, non-MIB1 clones overestimated Ki67 PI compared to MIB1, resulting in grading discordances. Image analysis shows good agreement with manual Ki67 PI but a tendency to overestimate absolute Ki67 PI. Increasing the size of tumour hot-spot from 500 to 2000 cells resulted in a decrease in Ki67 PI. CONCLUSION: Different anti-Ki67 clones do not produce equivalent PIs in GEP NETs, and clone selection may therefore affect patient care. Increasing the hot-spot size decreases the Ki67 PI. Greater standardisation in terms of antibody clone selection and hot-spot size is required for grading GEP NETs. Image analysis is an effective tool for assisting Ki67 assessment and allows easier standardisation of the size of the tumour hot-spot.
Asunto(s)
Biomarcadores de Tumor/análisis , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Intestinales/patología , Índice Mitótico/métodos , Clasificación del Tumor/métodos , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Neoplasias Gástricas/patología , Anticuerpos Antinucleares , Anticuerpos Monoclonales , Humanos , Inmunohistoquímica/métodos , Inmunohistoquímica/normas , Antígeno Ki-67/análisis , Índice Mitótico/normas , Clasificación del Tumor/normasRESUMEN
BACKGROUND: Immunohistochemical quantification of the immune response is prognostic for colorectal cancer (CRC). Here, we evaluate the suitability of alternative immune classifiers on prognosis and assess whether they relate to biological features amenable to targeted therapy. METHODS: Overall survival by immune (CD3, CD4, CD8, CD20 and FOXP3) and immune-checkpoint (ICOS, IDO-1 and PD-L1) biomarkers in independent CRC cohorts was evaluated. Matched mutational and transcriptomic data were interrogated to identify associated biology. RESULTS: Determination of immune-cold tumours by combined low-density cell counts of CD3, CD4 and CD8 immunohistochemistry constituted the best prognosticator across stage II-IV CRC, particularly in patients with stage IV disease (HR 1.98 [95% CI: 1.47-2.67]). These immune-cold CRCs were associated with tumour hypoxia, confirmed using CAIX immunohistochemistry (P = 0.0009), which may mediate disease progression through common biology (KRAS mutations, CRIS-B subtype and SPP1 mRNA overexpression). CONCLUSIONS: Given the significantly poorer survival of immune-cold CRC patients, these data illustrate that assessment of CD4-expressing cells complements low CD3 and CD8 immunohistochemical quantification in the tumour bulk, potentially facilitating immunophenotyping of patient biopsies to predict prognosis. In addition, we found immune-cold CRCs to associate with a difficult-to-treat, poor prognosis hypoxia signature, indicating that these patients may benefit from hypoxia-targeting clinical trials.
Asunto(s)
Neoplasias Colorrectales/mortalidad , Hipoxia Tumoral/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Complejo CD3/análisis , Antígenos CD4/análisis , Antígenos CD8/análisis , Neoplasias Colorrectales/inmunología , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , PronósticoRESUMEN
Triple negative breast cancer (TNBC) is a poor outcome subset of breast cancers characterised by the lack of expression of ER α, PR, and HER2 amplification. It is a heterogeneous group of cancers which fail to derive benefit from modern, more targeted treatments such as Tamoxifen and Herceptin. Current standard of care (SoC) is cytotoxic chemotherapy, which is effective for some patients, with other patients deriving little/no benefit and lacking alternative treatments. This study has identified the glucocorticoid receptor (GR) as a potential predictive biomarker of response to anthracycline-based chemotherapy in triple negative breast cancer (TNBC). GR gene expression levels in patient samples were analysed through publicly available microarray datasets as well as protein expression through immunohistochemistry (IHC) and correlated with clinical/pathological outcomes, including survival. While the results confirmed previous observations that high GR expression is associated with poor outcome in response to taxane-based chemotherapy, this study shows for the first time that high GR expression is associated with improved outcomes in the context of anthracycline-based chemotherapy. GR therefore has the potential to be used as a predictive biomarker to guide treatment choices and ensure that patients derive the greatest benefit from first line treatment, avoiding unnecessary costs, side effects, and disease progression.
RESUMEN
BACKGROUND: Limited studies examine the immune landscape in Esophageal Adenocarcinoma (EAC). We aim to identify novel associations, which may inform immunotherapy treatment stratification. METHODS: Three hundred twenty-nine EAC cases were available in Tissue Microarrays (TMA) format. A discovery cohort of 166 EAC cases were stained immunohistochemically for range of adaptive immune (CD3, CD4, CD8 and CD45RO) and immune checkpoint biomarkers (ICOS, IDO-1, PD-L1, PD-1). A validation cohort of 163 EAC cases was also accessed. A digital pathology analysis approach was used to quantify biomarker density. RESULTS: CD3, CD4, CD8, CD45RO, ICOS and PD-1 were individually predictive of better overall survival (OS) (Log rank p = < 0.001; p = 0.014; p = 0.001; p = < 0.001; p = 0.008 and p = 0.026 respectively). Correlation and multivariate analysis identified high CD45RO/ICOS patients with significantly improved OS which was independently prognostic (HR = 0.445, (0.223-0.886), p = 0.021). Assessment of CD45RO and ICOS high cases in the validation cohort revealed an associated with improved OS (HR = 0.601 (0.363-0.996), p = 0.048). Multiplex IHC identified cellular co-expression of high CD45RO/ICOS. High CD45RO/ICOS patients have significantly improved OS. CONCLUSIONS: Multiplexing identifies true cellular co-expression. These data demonstrate that co-expression of immune biomarkers are associated with better outcome in EAC and may provide evidence for immunotherapy treatment stratification.
Asunto(s)
Adenocarcinoma/terapia , Biomarcadores de Tumor/metabolismo , Neoplasias Esofágicas/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Neoadyuvante/métodos , Microambiente Tumoral/inmunología , Inmunidad Adaptativa , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Biomarcadores de Tumor/inmunología , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Esofagectomía , Esófago/inmunología , Esófago/patología , Esófago/cirugía , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Matrices TisularesRESUMEN
Targeting of the programmed cell death protein (PD-1)/programmed death-ligand 1 (PD-L1) axis with checkpoint inhibitors has changed clinical practice in non-small cell lung cancer (NSCLC). However, clinical assessment remains complex and ambiguous. We aim to assess whether digital image analysis (DIA) and multiplex immunofluorescence can improve the accuracy of PD-L1 diagnostic testing. A clinical cohort of routine NSCLC patients reflex tested for PD-L1 (SP263) immunohistochemistry (IHC), was assessed using DIA. Samples of varying assessment difficulty were assessed by multiplex immunofluorescence. Sensitivity, specificity, and concordance was evaluated between manual diagnostic evaluation and DIA for chromogenic and multiplex IHC. PD-L1 expression by DIA showed significant concordance (R² = 0.8248) to manual assessment. Sensitivity and specificity was 86.8% and 91.4%, respectively. Evaluation of DIA scores revealed 96.8% concordance to manual assessment. Multiplexing enabled PD-L1+/CD68+ macrophages to be readily identified within PD-L1+/cytokeratin+ or PD-L1-/cytokeratin+ tumor nests. Assessment of multiplex vs. chromogenic IHC had a sensitivity and specificity of 97.8% and 91.8%, respectively. Deployment of DIA for PD-L1 diagnostic assessment is an accurate process of case triage. Multiplex immunofluorescence provided higher confidence in PD-L1 assessment and could be offered for challenging cases by centers with appropriate expertise and specialist equipment.
RESUMEN
BACKGROUND: Triple negative breast cancer (TNBC) is the subset of breast cancer associated with the poorest outcome, and currently lacks targeted treatments. Standard of care (SoC) chemotherapy often consists of DNA damaging chemotherapies ± taxanes, with a range of responses observed. However, we currently lack biomarkers to predict this response and lack alternate treatment options. METHODS: Pin1 expression was modulated in vitro and proliferation and treatment response was studied. Pin1 expression was analysed in patient samples and correlated with clinical outcome. RESULTS: In this study, we have shown that the prolyl isomerase, Pin1, which is highly expressed in TNBC, plays a key role in pathogenesis of the disease. Knockdown of Pin1 in TNBC resulted in cell death while the opposite is seen in normal cells. We revealed for the first time that loss of Pin1 leads to increased sensitivity to Taxol but only in the absence of functional BRCA1. Conversely, loss of Pin1 results in decreased sensitivity to DNA-damaging agents independent of BRCA1 status. Analysis of Pin1 gene or IHC-based expression in over 200 TNBC patient samples revealed a novel role for Pin1 as a TNBC-specific biomarker, with high expression associated with improved outcome in the context of SoC chemotherapy. Preliminary data indicated this may be extended to other treatment options (e.g. Cisplatin/Parp Inhibitors) that are gaining traction for the treatment of TNBC. CONCLUSIONS: This study highlights the important role played by Pin1 in TNBC and highlights the context-dependent functions in modulating cell growth and response to treatment.
RESUMEN
BACKGROUND: Determination of human papillomavirus (HPV) status has become clinically relevant for patient stratification under UICC TNM8 staging. Within the United Kingdom, a combination of p16 IHC and HPV DNA-ISH is recommended for classifying HPV status. This study will assess a series of clinically applicable second-line molecular tests to run in combination with p16 IHC to optimally determine HPV status. METHODS: The ability of HPV RNA-ISH, HPV DNA-ISH, and HPV DNA-PCR to identify p16-positive/HPV-positive patients was investigated in a population-based oropharyngeal squamous cell carcinoma (OPSCC) cohort of patients diagnosed in Northern Ireland from 2000 to 2011. RESULTS: Only 41% of the Northern Irish OPSCC patient population was associated with HPV-driven carcinogenesis. Both ISH assays were more specific than the DNA-PCR assay (100% and 95% vs. 67%) and were less likely to be affected by preanalytic factors such as increasing block age. A pooled HPV genotype probe for RNA-ISH was found to be the most accurate molecular assay assessed (95% accuracy) when compared with p16 positivity. CONCLUSIONS: Our study demonstrates the advantage of tissue-based molecular assays when determining HPV status in retrospective samples. Specifically, we demonstrate the enhanced sensitivity and specificity of ISH techniques compared with PCR-based methodology when working with formalin-fixed paraffin-embedded tissue, and found HPV RNA-ISH to be the most effective assay for determining HPV status. IMPACT: As p16 IHC is a relatively inexpensive, accessible, and sensitive test for stratifying patients by HPV status, this study finds that more patients would benefit from first-line p16 IHC followed by specific HPV testing using HPV RNA-ISH to confirm HPV status.