Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
3.
Anal Bioanal Chem ; 415(1): 35-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36435841

RESUMEN

Non-targeted analysis (NTA) using high-resolution mass spectrometry allows scientists to detect and identify a broad range of compounds in diverse matrices for monitoring exposure and toxicological evaluation without a priori chemical knowledge. NTA methods present an opportunity to describe the constituents of a sample across a multidimensional swath of chemical properties, referred to as "chemical space." Understanding and communicating which region of chemical space is extractable and detectable by an NTA workflow, however, remains challenging and non-standardized. For example, many sample processing and data analysis steps influence the types of chemicals that can be detected and identified. Accordingly, it is challenging to assess whether analyte non-detection in an NTA study indicates true absence in a sample (above a detection limit) or is a false negative driven by workflow limitations. Here, we describe the need for accessible approaches that enable chemical space mapping in NTA studies, propose a tool to address this need, and highlight the different ways in which it could be implemented in NTA workflows. We identify a suite of existing predictive and analytical tools that can be used in combination to generate scores that describe the likelihood a compound will be detected and identified by a given NTA workflow based on the predicted chemical space of that workflow. Higher scores correspond to a higher likelihood of compound detection and identification in a given workflow (based on sample extraction, data acquisition, and data analysis parameters). Lower scores indicate a lower probability of detection, even if the compound is truly present in the samples of interest. Understanding the constraints of NTA workflows can be useful for stakeholders when results from NTA studies are used in real-world applications and for NTA researchers working to improve their workflow performance. The hypothetical ChemSpaceTool suggested herein could be used in both a prospective and retrospective sense. Prospectively, the tool can be used to further curate screening libraries and set identification thresholds. Retrospectively, false detections can be filtered by the plausibility of the compound identification by the selected NTA method, increasing the confidence of unknown identifications. Lastly, this work highlights the chemometric needs to make such a tool robust and usable across a wide range of NTA disciplines and invites others who are working on various models to participate in the development of the ChemSpaceTool. Ultimately, the development of a chemical space mapping tool strives to enable further standardization of NTA by improving method transparency and communication around false detection rates, thus allowing for more direct method comparisons between studies and improved reproducibility. This, in turn, is expected to promote further widespread applications of NTA beyond research-oriented settings.


Asunto(s)
Estudios Retrospectivos , Reproducibilidad de los Resultados , Estudios Prospectivos , Espectrometría de Masas/métodos , Estándares de Referencia
4.
Environ Sci Eur ; 34(1): 104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284750

RESUMEN

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

5.
Anal Chem ; 93(49): 16289-16296, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34842413

RESUMEN

Non-targeted analysis (NTA) encompasses a rapidly evolving set of mass spectrometry techniques aimed at characterizing the chemical composition of complex samples, identifying unknown compounds, and/or classifying samples, without prior knowledge regarding the chemical content of the samples. Recent advances in NTA are the result of improved and more accessible instrumentation for data generation and analysis tools for data evaluation and interpretation. As researchers continue to develop NTA approaches in various scientific fields, there is a growing need to identify, disseminate, and adopt community-wide method reporting guidelines. In 2018, NTA researchers formed the Benchmarking and Publications for Non-Targeted Analysis Working Group (BP4NTA) to address this need. Consisting of participants from around the world and representing fields ranging from environmental science and food chemistry to 'omics and toxicology, BP4NTA provides resources addressing a variety of challenges associated with NTA. Thus far, BP4NTA group members have aimed to establish a consensus on NTA-related terms and concepts and to create consistency in reporting practices by providing resources on a public Web site, including consensus definitions, reference content, and lists of available tools. Moving forward, BP4NTA will provide a setting for NTA researchers to continue discussing emerging challenges and contribute to additional harmonization efforts.


Asunto(s)
Benchmarking , Humanos
6.
Anal Bioanal Chem ; 413(30): 7495-7508, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34648052

RESUMEN

With the increasing availability of high-resolution mass spectrometers, suspect screening and non-targeted analysis are becoming popular compound identification tools for environmental researchers. Samples of interest often contain a large (unknown) number of chemicals spanning the detectable mass range of the instrument. In an effort to separate these chemicals prior to injection into the mass spectrometer, a chromatography method is often utilized. There are numerous types of gas and liquid chromatographs that can be coupled to commercially available mass spectrometers. Depending on the type of instrument used for analysis, the researcher is likely to observe a different subset of compounds based on the amenability of those chemicals to the selected experimental techniques and equipment. It would be advantageous if this subset of chemicals could be predicted prior to conducting the experiment, in order to minimize potential false-positive and false-negative identifications. In this work, we utilize experimental datasets to predict the amenability of chemical compounds to detection with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The assembled dataset totals 5517 unique chemicals either explicitly detected or not detected with LC-ESI-MS. The resulting detected/not-detected matrix has been modeled using specific molecular descriptors to predict which chemicals are amenable to LC-ESI-MS, and to which form(s) of ionization. Random forest models, including a measure of the applicability domain of the model for both positive and negative modes of the electrospray ionization source, were successfully developed. The outcome of this work will help to inform future suspect screening and non-targeted analyses of chemicals by better defining the potential LC-ESI-MS detectable chemical landscape of interest.

7.
Anal Chem ; 93(33): 11601-11611, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34382770

RESUMEN

There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure-retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/.


Asunto(s)
Reproducibilidad de los Resultados , Calibración , Cromatografía Liquida , Espectrometría de Masas
8.
Metabolites ; 10(6)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585902

RESUMEN

Software applications for high resolution mass spectrometry (HRMS)-based non-targeted analysis (NTA) continue to enhance chemical identification capabilities. Given the variety of available applications, determining the most fit-for-purpose tools and workflows can be difficult. The Critical Assessment of Small Molecule Identification (CASMI) contests were initiated in 2012 to provide a means to evaluate compound identification tools on a standardized set of blinded tandem mass spectrometry (MS/MS) data. Five CASMI contests have resulted in recommendations, publications, and invaluable datasets for practitioners of HRMS-based screening studies. The US Environmental Protection Agency's (EPA) CompTox Chemicals Dashboard is now recognized as a valuable resource for compound identification in NTA studies. However, this application was too new and immature in functionality to participate in the five previous CASMI contests. In this work, we performed compound identification on all five CASMI contest datasets using Dashboard tools and data in order to critically evaluate Dashboard performance relative to that of other applications. CASMI data was accessed via the CASMI webpage and processed for use in our spectral matching and identification workflow. Relative to applications used by former contest participants, our tools, data, and workflow performed well, placing more challenge compounds in the top five of ranked candidates than did the winners of three contest years and tying in a fourth. In addition, we conducted an in-depth review of the CASMI structure sets and made these reviewed sets available via the Dashboard. Our results suggest that Dashboard data and tools would enhance chemical identification capabilities for practitioners of HRMS-based NTA.

9.
Anal Bioanal Chem ; 412(6): 1303-1315, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31965249

RESUMEN

High-resolution mass spectrometry (HRMS) enables rapid chemical annotation via accurate mass measurements and matching of experimentally derived spectra with reference spectra. Reference libraries are generated from chemical standards and are therefore limited in size relative to known chemical space. To address this limitation, in silico spectra (i.e., MS/MS or MS2 spectra), predicted via Competitive Fragmentation Modeling-ID (CFM-ID) algorithms, were generated for compounds within the U.S. Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database (totaling, at the time of analysis, ~ 765,000 substances). Experimental spectra from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) mixtures (n = 10) were then used to evaluate the performance of the in silico spectra. Overall, MS2 spectra were acquired for 377 unique compounds from the ENTACT mixtures. Approximately 53% of these compounds were correctly identified using a commercial reference library, whereas up to 50% were correctly identified as the top hit using the in silico library. Together, the reference and in silico libraries were able to correctly identify 73% of the 377 ENTACT substances. When using the in silico spectra for candidate filtering, an examination of binary classifiers showed a true positive rate (TPR) of 0.90 associated with false positive rates (FPRs) of 0.10 to 0.85, depending on the sample and method of candidate filtering. Taken together, these findings show the abilities of in silico spectra to correctly identify true positives in complex samples (at rates comparable to those observed with reference spectra), and efficiently filter large numbers of potential false positives from further consideration. Graphical abstract.

10.
Sci Data ; 6(1): 141, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375670

RESUMEN

Confident identification of unknown chemicals in high resolution mass spectrometry (HRMS) screening studies requires cohesive workflows and complementary data, tools, and software. Chemistry databases, screening libraries, and chemical metadata have become fixtures in identification workflows. To increase confidence in compound identifications, the use of structural fragmentation data collected via tandem mass spectrometry (MS/MS or MS2) is vital. However, the availability of empirically collected MS/MS data for identification of unknowns is limited. Researchers have therefore turned to in silico generation of MS/MS data for use in HRMS-based screening studies. This paper describes the generation en masse of predicted MS/MS spectra for the entirety of the US EPA's DSSTox database using competitive fragmentation modelling and a freely available open source tool, CFM-ID. The generated dataset comprises predicted MS/MS spectra for ~700,000 structures, and mappings between predicted spectra, structures, associated substances, and chemical metadata. Together, these resources facilitate improved compound identifications in HRMS screening studies. These data are accessible via an SQL database, a comma-separated export file (.csv), and EPA's CompTox Chemicals Dashboard.

11.
Anal Bioanal Chem ; 411(4): 835-851, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30612177

RESUMEN

Non-targeted analysis (NTA) methods are increasingly used to discover contaminants of emerging concern (CECs), but the extent to which these methods can support exposure and health studies remains to be determined. EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) was launched in 2016 to address this need. As part of ENTACT, 1269 unique substances from EPA's ToxCast library were combined to make ten synthetic mixtures, with each mixture containing between 95 and 365 substances. As a participant in the trial, we first performed blinded NTA on each mixture using liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS). We then performed an unblinded evaluation to identify limitations of our NTA method. Overall, at least 60% of spiked substances could be observed using selected methods. Discounting spiked isomers, true positive rates from the blinded and unblinded analyses reached a maximum of 46% and 65%, respectively. An overall reproducibility rate of 75% was observed for substances spiked into more than one mixture and observed at least once. Considerable discordance in substance identification was observed when comparing a subset of our results derived from two separate reversed-phase chromatography methods. We conclude that a single NTA method, even when optimized, can likely characterize only a subset of ToxCast substances (and, by extension, other CECs). Rigorous quality control and self-evaluation practices should be required of labs generating NTA data to support exposure and health studies. Accurate and transparent communication of performance results will best enable meaningful interpretations and defensible use of NTA data. Graphical abstract ᅟ.


Asunto(s)
Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Mezclas Complejas , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Espectrometría de Masas/métodos , Contaminantes Ambientales/toxicidad , Trazadores Radiactivos , Estándares de Referencia , Reproducibilidad de los Resultados
12.
J Cheminform ; 10(1): 45, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30167882

RESUMEN

Chemical database searching has become a fixture in many non-targeted identification workflows based on high-resolution mass spectrometry (HRMS). However, the form of a chemical structure observed in HRMS does not always match the form stored in a database (e.g., the neutral form versus a salt; one component of a mixture rather than the mixture form used in a consumer product). Linking the form of a structure observed via HRMS to its related form(s) within a database will enable the return of all relevant variants of a structure, as well as the related metadata, in a single query. A Konstanz Information Miner (KNIME) workflow has been developed to produce structural representations observed using HRMS ("MS-Ready structures") and links them to those stored in a database. These MS-Ready structures, and associated mappings to the full chemical representations, are surfaced via the US EPA's Chemistry Dashboard ( https://comptox.epa.gov/dashboard/ ). This article describes the workflow for the generation and linking of ~ 700,000 MS-Ready structures (derived from ~ 760,000 original structures) as well as download, search and export capabilities to serve structure identification using HRMS. The importance of this form of structural representation for HRMS is demonstrated with several examples, including integration with the in silico fragmentation software application MetFrag. The structures, search, download and export functionality are all available through the CompTox Chemistry Dashboard, while the MetFrag implementation can be viewed at https://msbi.ipb-halle.de/MetFragBeta/ .

13.
Talanta ; 182: 371-379, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29501166

RESUMEN

High-resolution mass spectrometry (HRMS) data has revolutionized the identification of environmental contaminants through non-targeted analysis (NTA). However, chemical identification remains challenging due to the vast number of unknown molecular features typically observed in environmental samples. Advanced data processing techniques are required to improve chemical identification workflows. The ideal workflow brings together a variety of data and tools to increase the certainty of identification. One such tool is chromatographic retention time (RT) prediction, which can be used to reduce the number of possible suspect chemicals within an observed RT window. This paper compares the relative predictive ability and applicability to NTA workflows of three RT prediction models: (1) a logP (octanol-water partition coefficient)-based model using EPI Suite™ logP predictions; (2) a commercially available ACD/ChromGenius model; and, (3) a newly developed Quantitative Structure Retention Relationship model called OPERA-RT. Models were developed using the same training set of 78 compounds with experimental RT data and evaluated for external predictivity on an identical test set of 19 compounds. Both the ACD/ChromGenius and OPERA-RT models outperformed the EPI Suite™ logP-based RT model (R2 = 0.81-0.92, 0.86-0.83, 0.66-0.69 for training-test sets, respectively). Further, both OPERA-RT and ACD/ChromGenius predicted 95% of RTs within a ± 15% chromatographic time window of experimental RTs. Based on these results, we simulated an NTA workflow with a ten-fold larger list of candidate structures generated for formulae of the known test set chemicals using the U.S. EPA's CompTox Chemistry Dashboard (https://comptox.epa.gov/dashboard), RTs for all candidates were predicted using both ACD/ChromGenius and OPERA-RT, and RT screening windows were assessed for their ability to filter out unlikely candidate chemicals and enhance potential identification. Compared to ACD/ChromGenius, OPERA-RT screened out a greater percentage of candidate structures within a 3-min RT window (60% vs. 40%) but retained fewer of the known chemicals (42% vs. 83%). By several metrics, the OPERA-RT model, generated as a proof-of-concept using a limited set of open source data, performed as well as the commercial tool ACD/ChromGenius when constrained to the same small training and test sets. As the availability of RT data increases, we expect the OPERA-RT model's predictive ability will increase.

14.
Environ Sci Pollut Res Int ; 25(13): 12451-12463, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29460251

RESUMEN

Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contaminants of emerging concern (CECs) before release of treated wastewater. To better characterize CECs and potential for increased implementation of FWR systems, FWR systems need to be directly compared to conventional WWTPs. In this study, both a quantitative, targeted analysis and a nontargeted analysis were utilized to better understand how CECs release to waterways from an FWR system compared to a conventional treatment system. Quantitatively, greater concentrations and total mass load of CECs was exhibited downstream of the conventional WWTP compared to the FWR. Average summed concentrations of 33 targeted CECs downstream of the conventional system were ~ 1000 ng/L and downstream of the FWR were ~ 30 ng/L. From a nontargeted chemical standpoint, more tentatively identified chemicals were present, and at a greater relative abundance, downstream of the conventional system as well. Frequently occurring contaminants included phthalates, pharmaceuticals, and industrial chemicals. These data indicate that FWR systems represent a sustainable wastewater treatment alternative and that emerging contaminant release to waterways was lower at a FWR system than a conventional WWTP.


Asunto(s)
Monitoreo del Ambiente , Agricultura Forestal/métodos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Riego Agrícola , North Carolina
15.
Environ Sci Technol ; 52(5): 3125-3135, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29405058

RESUMEN

A two-dimensional gas chromatography-time-of-flight/mass spectrometry (GC×GC-TOF/MS) suspect screening analysis method was used to rapidly characterize chemicals in 100 consumer products-which included formulations (e.g., shampoos, paints), articles (e.g., upholsteries, shower curtains), and foods (cereals)-and therefore supports broader efforts to prioritize chemicals based on potential human health risks. Analyses yielded 4270 unique chemical signatures across the products, with 1602 signatures tentatively identified using the National Institute of Standards and Technology 2008 spectral database. Chemical standards confirmed the presence of 119 compounds. Of the 1602 tentatively identified chemicals, 1404 were not present in a public database of known consumer product chemicals. Reported data and model predictions of chemical functional use were applied to evaluate the tentative chemical identifications. Estimated chemical concentrations were compared to manufacturer-reported values and other measured data. Chemical presence and concentration data can now be used to improve estimates of chemical exposure, and refine estimates of risk posed to human health and the environment.


Asunto(s)
Productos Domésticos , Cromatografía de Gases y Espectrometría de Masas , Humanos
16.
J Expo Sci Environ Epidemiol ; 28(5): 411-426, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29288256

RESUMEN

Tens-of-thousands of chemicals are registered in the U.S. for use in countless processes and products. Recent evidence suggests that many of these chemicals are measureable in environmental and/or biological systems, indicating the potential for widespread exposures. Traditional public health research tools, including in vivo studies and targeted analytical chemistry methods, have been unable to meet the needs of screening programs designed to evaluate chemical safety. As such, new tools have been developed to enable rapid assessment of potentially harmful chemical exposures and their attendant biological responses. One group of tools, known as "non-targeted analysis" (NTA) methods, allows the rapid characterization of thousands of never-before-studied compounds in a wide variety of environmental, residential, and biological media. This article discusses current applications of NTA methods, challenges to their effective use in chemical screening studies, and ways in which shared resources (e.g., chemical standards, databases, model predictions, and media measurements) can advance their use in risk-based chemical prioritization. A brief review is provided of resources and projects within EPA's Office of Research and Development (ORD) that provide benefit to, and receive benefits from, NTA research endeavors. A summary of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) is also given, which makes direct use of ORD resources to benefit the global NTA research community. Finally, a research framework is described that shows how NTA methods will bridge chemical prioritization efforts within ORD. This framework exists as a guide for institutions seeking to understand the complexity of chemical exposures, and the impact of these exposures on living systems.


Asunto(s)
Seguridad Química/métodos , Exposición a Riesgos Ambientales/análisis , United States Environmental Protection Agency , Bases de Datos Factuales , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos , Estados Unidos
17.
Environ Pollut ; 234: 297-306, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29182974

RESUMEN

Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries.


Asunto(s)
Agua Potable/análisis , Filtración/instrumentación , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Espectrometría de Masas/métodos , North Carolina , Proyectos Piloto
18.
J Cheminform ; 9(1): 61, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29185060

RESUMEN

Despite an abundance of online databases providing access to chemical data, there is increasing demand for high-quality, structure-curated, open data to meet the various needs of the environmental sciences and computational toxicology communities. The U.S. Environmental Protection Agency's (EPA) web-based CompTox Chemistry Dashboard is addressing these needs by integrating diverse types of relevant domain data through a cheminformatics layer, built upon a database of curated substances linked to chemical structures. These data include physicochemical, environmental fate and transport, exposure, usage, in vivo toxicity, and in vitro bioassay data, surfaced through an integration hub with link-outs to additional EPA data and public domain online resources. Batch searching allows for direct chemical identifier (ID) mapping and downloading of multiple data streams in several different formats. This facilitates fast access to available structure, property, toxicity, and bioassay data for collections of chemicals (hundreds to thousands at a time). Advanced search capabilities are available to support, for example, non-targeted analysis and identification of chemicals using mass spectrometry. The contents of the chemistry database, presently containing ~ 760,000 substances, are available as public domain data for download. The chemistry content underpinning the Dashboard has been aggregated over the past 15 years by both manual and auto-curation techniques within EPA's DSSTox project. DSSTox chemical content is subject to strict quality controls to enforce consistency among chemical substance-structure identifiers, as well as list curation review to ensure accurate linkages of DSSTox substances to chemical lists and associated data. The Dashboard, publicly launched in April 2016, has expanded considerably in content and user traffic over the past year. It is continuously evolving with the growth of DSSTox into high-interest or data-rich domains of interest to EPA, such as chemicals on the Toxic Substances Control Act listing, while providing the user community with a flexible and dynamic web-based platform for integration, processing, visualization and delivery of data and resources. The Dashboard provides support for a broad array of research and regulatory programs across the worldwide community of toxicologists and environmental scientists.

19.
Sci Total Environ ; 581-582: 705-714, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073640

RESUMEN

Forest-water reuse systems infiltrate municipal, industrial, and agricultural wastewaters through forest soils to shallow aquifers that ultimately discharge to surface waters. Their ability to mitigate regulated nutrients, metals, and organic chemicals is well known, but the fate of non-regulated chemicals in these systems is largely unstudied. This study quantified 33 pharmaceuticals and personal care products (PPCPs) in soils, groundwaters, and surface waters in a 2000-hectare forest that receives ~1200mm/year of secondary-treated, municipal wastewater in addition to natural rainfall (~1300mm/year). This forest-water reuse system does contribute PPCPs to soils, groundwater, and surface waters. PPCPs were more abundant in soils versus underlying groundwater by an order of magnitude (5-10ng/g summed PPCPs in soil and 50-100ng/L in groundwater) and the more hydrophobic chemicals were predominant in soil over water. PPCP concentrations in surface waters were greater at the onset of significant storm events and during low-rainfall periods when total summed PPCPs were >80ng/L, higher than the annual average. With few exceptions, the margins of exposure for PPCPs in groundwater and surface waters were several orders of magnitude above values indicative of human health risk.


Asunto(s)
Cosméticos/análisis , Monitoreo del Ambiente , Bosques , Preparaciones Farmacéuticas/análisis , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Suelo/química , Aguas Residuales
20.
Anal Bioanal Chem ; 409(7): 1729-1735, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27987027

RESUMEN

Chemical features observed using high-resolution mass spectrometry can be tentatively identified using online chemical reference databases by searching molecular formulae and monoisotopic masses and then rank-ordering of the hits using appropriate relevance criteria. The most likely candidate "known unknowns," which are those chemicals unknown to an investigator but contained within a reference database or literature source, rise to the top of a chemical list when rank-ordered by the number of associated data sources. The U.S. EPA's CompTox Chemistry Dashboard is a curated and freely available resource for chemistry and computational toxicology research, containing more than 720,000 chemicals of relevance to environmental health science. In this research, the performance of the Dashboard for identifying known unknowns was evaluated against that of the online ChemSpider database, one of the primary resources used by mass spectrometrists, using multiple previously studied datasets reported in the peer-reviewed literature totaling 162 chemicals. These chemicals were examined using both applications via molecular formula and monoisotopic mass searches followed by rank-ordering of candidate compounds by associated references or data sources. A greater percentage of chemicals ranked in the top position when using the Dashboard, indicating an advantage of this application over ChemSpider for identifying known unknowns using data source ranking. Additional approaches are being developed for inclusion into a non-targeted analysis workflow as part of the CompTox Chemistry Dashboard. This work shows the potential for use of the Dashboard in exposure assessment and risk decision-making through significant improvements in non-targeted chemical identification. Graphical abstract Identifying known unknowns in the US EPA's CompTox Chemistry Dashboard from molecular formula and monoisotopic mass inputs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA