Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Hortic Res ; 11(10): uhae213, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39386000

RESUMEN

Developing disease-suppressive soils is an effective approach for managing soilborne diseases, which can be achieved through crop metabolism and root secretion modification to recruit beneficial soil microbiota. Many factors, such as light, can elicit and modify plant metabolomic activities, resulting in disease suppression. To investigate the impact of light, Panax notoginseng was planted in a greenhouse and forest, conditioned with three levels of light intensities, including the optimal (15% light transmittance of full light), suboptimal low (5% light transmittance of full light) and suboptimal high (30% light transmittance of full light) intensities. We assessed the rhizosphere microbiota of P. notoginseng and root rot disease caused by soilborne pathogen Ilyonectria destructans, and elucidated the mechanism. Results showed that suboptimal light conditions alleviated root rot disease of P. notoginseng by enriching beneficial microbiota in the rhizosphere. Both low and high light stresses enhanced the secondary metabolism profile in favor of plant defense, particularly the flavonoid pathway. Notably, high light stress demonstrated a robust ability to promote flavonoid metabolism and secretion, resulting in the enrichment of more beneficial microorganisms that suppressed the soilborne pathogen I. destructans. These findings highlight the potential for adjusting canopy light intensities to improve soil health and promote sustainable agriculture.

2.
mBio ; 15(10): e0142924, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39248564

RESUMEN

Limited knowledge is available on the differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibody breadth and T cell differentiation among different COVID-19 sequential vaccination strategies. In this study, we compared the immunogenicity of the third different dose of COVID-19 vaccines, such as mRNA (I-I-M), adenoviral vector (I-I-A), and recombinant protein (I-I-R) vaccines, in terms of the magnitude and breadth of antibody response and differentiation of SARS-CoV-2-specific T and B cells. These studies were performed in the same clinical trial, and the samples were assessed in the same laboratory. IGHV1-69, IGHV3-9, and IGHV4-34 were the dominant B cell receptor (BCR) usages of the I-I-M, I-I-A, and I-I-R groups, respectively; the RBD+ B cell activation capacities were comparable. Additionally, the I-I-R group was characterized by higher numbers of regulatory T cells, circulating T follicular helper cells (cTFH) - cTFH1 (CXRC3+CCR6-), cTFH1-17 (CXRC3+CCR6+), cTFH17 (CXRC3-CCR6+), and cTFH-CM (CD45RA-CCR7+), and lower SMNE+ T cell proliferative capacity than the other two groups, whereas I-I-A showed a higher proportion and number of virus-specific CD4+ T cells than I-I-R, as determined in ex vivo experiments. Our data confirmed different SARS-CoV-2-specific antibody profiles among the three different vaccination strategies and also provided insights regarding BCR usage and T/B cell activation and differentiation, which will guide a better selection of vaccination strategies in the future. IMPORTANCE: Using the same laboratory test to avoid unnecessary interference due to cohort ethnicity, and experimental and statistical errors, we have compared the T/B cell immune response in the same cohort sequential vaccinated by different types of COVID-19 vaccine. We found that different sequential vaccinations can induce different dominant BCR usage with no significant neutralizing titers and RBD+ B-cell phenotype. Recombinant protein vaccine can induce higher numbers of regulatory T cells, circulating TFH (CTFH)1, CTFH17, and CTFH-CM, and lower SMNE+ T-cell proliferative capacity than the other two groups, whereas I-I-A showed higher proportion and number of virus-specific CD4+ T cells than I-I-R. Overall, our study provides a deep insight about the source of differences in immune protection of different types of COVID-19 vaccines, which further improves our understanding of the mechanisms underlying the immune response to SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Activación de Linfocitos , Receptores de Antígenos de Linfocitos B , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Linfocitos B/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/genética , Vacunación , Linfocitos T/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre
3.
Cell Mol Life Sci ; 81(1): 330, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097839

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a complex syndrome with poorly understood mechanisms driving its early progression (GOLD stages 1-2). Elucidating the genetic factors that influence early-stage COPD, particularly those related to airway inflammation and remodeling, is crucial. This study analyzed lung tissue sequencing data from patients with early-stage COPD (GSE47460) and smoke-exposed mice. We employed Weighted Gene Co-Expression Network Analysis (WGCNA) and machine learning to identify potentially pathogenic genes. Further analyses included single-cell sequencing from both mice and COPD patients to pinpoint gene expression in specific cell types. Cell-cell communication and pseudotemporal analyses were conducted, with findings validated in smoke-exposed mice. Additionally, Mendelian randomization (MR) was used to confirm the association between candidate genes and lung function/COPD. Finally, functional validation was performed in vitro using cell cultures. Machine learning analysis of 30 differentially expressed genes identified 8 key genes, with CLEC5A emerging as a potential pathogenic factor in early-stage COPD. Bioinformatics analyses suggested a role for CLEC5A in macrophage-mediated inflammation during COPD. Two-sample Mendelian randomization linked CLEC5A single nucleotide polymorphisms (SNPs) with Forced Expiratory Volume in One Second (FEV1), FEV1/Forced Vital Capacity (FVC) and early/later on COPD. In vitro, the knockdown of CLEC5A led to a reduction in inflammatory markers within macrophages. Our study identifies CLEC5A as a critical gene in early-stage COPD, contributing to its pathogenesis through pro-inflammatory mechanisms. This discovery offers valuable insights for developing early diagnosis and treatment strategies for COPD and highlights CLEC5A as a promising target for further investigation.


Asunto(s)
Progresión de la Enfermedad , Inflamación , Lectinas Tipo C , Macrófagos , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica , Receptores de Superficie Celular , Animales , Humanos , Masculino , Ratones , Inflamación/genética , Inflamación/patología , Inflamación/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pulmón/patología , Pulmón/metabolismo , Aprendizaje Automático , Macrófagos/metabolismo , Macrófagos/patología , Análisis de la Aleatorización Mendeliana , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
4.
Signal Transduct Target Ther ; 9(1): 141, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811527

RESUMEN

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.


Asunto(s)
Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19 , Células T de Memoria , Reinfección , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/inmunología , COVID-19/patología , SARS-CoV-2/inmunología , Masculino , Femenino , Reinfección/inmunología , Persona de Mediana Edad , Linfocitos T CD8-positivos/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Células T de Memoria/inmunología , Anciano , Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica
5.
J Agric Food Chem ; 72(17): 9669-9679, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38632108

RESUMEN

Soil-borne diseases represent an impediment to the sustainable development of agriculture. A soil-borne disease caused by Ilyonectria destructans severely impacts Panax species, and soil disinfestation has proven to be an effective management approach. Here, diallyl trisulfide (DATS), derived from garlic, exhibited pronounced inhibitory effects on the growth of I. destructans in vitro tests and contributed to the alleviation of soil-borne diseases in the field. A comprehensive analysis demonstrated that DATS inhibits the growth of I. destructans by activating detoxifying enzymes, such as GSTs, disrupting the equilibrium of redox reactions. A series of antioxidant amino acids were suppressed by DATS. Particularly noteworthy is the substantial depletion of glutathione by DATS, resulting in the accumulation of ROS, ultimately culminating in the inhibition of I. destructans growth. Briefly, DATS could effectively suppress soil-borne diseases by inhibiting pathogen growth through the activation of ROS, and it holds promise as a potential environmentally friendly soil disinfestation.


Asunto(s)
Compuestos Alílicos , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Sulfuros , Compuestos Alílicos/farmacología , Compuestos Alílicos/química , Sulfuros/farmacología , Sulfuros/metabolismo , Sulfuros/química , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Ajo/química , Ajo/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo , Fungicidas Industriales/farmacología , Fungicidas Industriales/química
6.
J Med Virol ; 96(3): e29544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511577

RESUMEN

The impact of SARS-CoV-2 infection shortly after vaccination on vaccine-induced immunity is unknown, which is also one of the concerns for some vaccinees during the pandemic. Here, based on a cohort of individuals who encountered BA.5 infection within 8 days after receiving the fourth dose of a bivalent mRNA vaccine, preceded by three doses of inactivated vaccines, we show that booster mRNA vaccination provided 48% protection efficacy against symptomatic infections. At Day 7 postvaccination, the level of neutralizing antibodies (Nabs) against WT and BA.5 strains in the uninfected group trended higher than those in the symptomatic infection group. Moreover, there were greater variations in Nabs levels and a significant decrease in virus-specific CD4+ T cell response observed in the symptomatic infection group. However, symptomatic BA.5 infection significantly increased Nab levels against XBB.1.9.1 and BA.5 (symptomatic > asymptomatic > uninfected group) at Day 10 and resulted in a more gradual decrease in Nabs against BA.5 compared to the uninfected group at Day 90. Our data suggest that BA.5 infection might hinder the early generation of Nabs and the recall of the CD4+ T cell response but strengthens the Nab and virus-specific T cell response in the later phase. Our data confirmed that infection can enhance host immunity regardless of the short interval between vaccination and infection and alleviate concerns about infections shortly after vaccination, which provides valuable guidance for developing future vaccine administration strategies.


Asunto(s)
Anticuerpos Neutralizantes , Vacunación , Humanos , Inmunización Secundaria , ARN Mensajero/genética , Vacunas Combinadas , Anticuerpos Antivirales
7.
BMC Microbiol ; 23(1): 278, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37775764

RESUMEN

BACKGROUND: Allyl isothiocyanate (AITC) is a natural product with high volatility that is used as a biofumigant to alleviate soil-borne plant diseases, and problems such as root knot nematodes (RKNs) that necessitate continuous cropping. However, little research has assessed the effects of AITC fumigation on medicinal plants. RESULTS: AITC significantly reduced the population of RKNs in soil (p < 0.0001) and showed an excellent RKN disease control effect within 6 months after sowing Panax notoginseng (p < 0.0001). The seedling survival rate of 2-year-old P. notoginseng was approximately 1.7-fold higher after soil treatment with AITC (p = 0.1008). 16S rRNA sequencing indicated that the AITC treatment affected bacterial richness rather than diversity in consecutively cultivated (CC) soil. Furthermore, biomarkers with statistical differences between AITC-treated and untreated CC soil showed that Pirellulales (order), Pirellulaceae (family), Pseudomonadaceae (family), and Pseudomonas (genus) played important roles in the AITC-treated group. In addition, the microbiome functional phenotypes predicted using the BugBase tool suggested that AITC treatment is more conducive to improving CC soil through changes in the bacterial community structure. Crucially, our research also suggested that AITC soil treatment significantly increases soil organic matter (p = 0.0055), total nitrogen (p = 0.0054), and available potassium (p = 0.0373), which promotes the survival of a succeeding medicinal plant (Polygonatum kingianum). CONCLUSION: AITC is an ecologically friendly soil treatment that affects the top 10 bacterial richness but not diversity. It could also provide a basis for a useful agricultural soil management measure to alleviate soil sickness.


Asunto(s)
Plantas Medicinales , Suelo , Suelo/química , Fumigación , ARN Ribosómico 16S/genética , Microbiología del Suelo , Bacterias/genética
8.
Clin Transl Med ; 13(6): e1292, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37317677

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the diseases with high mortality and morbidity with complex pathogenesis. Airway remodeling is an unavoidable pathological characteristic. However, the molecular mechanisms of airway remodeling are incompletely defined. METHODS: lncRNAs highly correlated with transforming growth factor beta 1(TGF-ß1) expression were chosen, the lncRNA ENST00000440406 (named HSP90AB1 Assoicated LncRNA 1, HSALR1) was chosen for further functional experiments. Dual luciferase and ChIP assay were used to detect the upstream of HSALR1, transcriptome sequencing, Cck-8, Edu, cell proliferation, cell cycle assay, and WB detection of pathway levels confirmed the effect of HSALR1 on fibroblast proliferation and phosphorylation levels of related pathways. Mice was infected with adeno-associated virus (AAV) to express HSALR1 by intratracheal instillation under anesthesia and was exposure to cigarette smoke, then mouse lung function was performed and the pathological sections of lung tissues were analyzed. RESULTS: Herein, lncRNA HSALR1 was identified as highly correlated with the TGF-ß1 and mainly expressed in human lung fibroblasts. HSALR1 was induced by Smad3 and promoted fibroblasts proliferation. Mechanistically, it could directly bind to HSP90AB1 protein, and acted as a scaffold to stabilize the binding between Akt and HSP90AB1 to promote Akt phosphorylation. In vivo, mice expressed HSALR1 by AAV was exposure to cigarette smoke (CS) for COPD modeling. We found that lung function was worse and airway remodeling was more pronounced in HSLAR1 mice compare to wild type (WT) mice. CONCLUSION: Our results suggest that lncRNA HSALR1 binds to HSP90AB1 and Akt complex component, and enhances activity of the TGF-ß1 smad3-independent pathway. This finding described here suggest that lncRNA can participate in COPD development, and HSLAR1 is a promising molecular target of COPD therapy.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta1/genética , Remodelación de las Vías Aéreas (Respiratorias) , Proteínas Proto-Oncogénicas c-akt , Proteínas HSP90 de Choque Térmico/genética
9.
Front Plant Sci ; 14: 1175878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152124

RESUMEN

Panax notoginseng saponins (PNSs) are used as industrial raw materials to produce many drugs to treat cardio-cerebrovascular diseases. However, it is a heat-sensitive plant, and its large-scale artificial cultivation is impeded by high temperature stress, leading to decreases in productivity and PNSs yield. Here, we examined exogenous foliar leucine to alleviate heat stress and explored the underlying mechanism using metabolomics. The results indicated that 3 and 5 mM exogenous foliar leucine significantly alleviated heat stress in one-year- and two-year-old P. notoginseng in pots and field trials. Exogenous foliar leucine enhanced the antioxidant capacity by increasing the activities of antioxidant enzymes (POD, SOD) and the contents of antioxidant metabolites (amino acids). Moreover, exogenous foliar leucine enhanced carbohydrate metabolism, including sugars (sucrose, maltose) and TCA cycle metabolites (citric acid, aconitic acid, succinic acid and fumaric acid), in P. notoginseng leaves, stems, and fibrous roots to improve the energy supply of plants and further alleviate heat stress. Field experiments further verified that exogenous foliar leucine increased the productivity and PNSs accumulation in P. notoginseng. These results suggest that leucine application is beneficial for improving the growth and quality of P. notoginseng under heat stress. It is therefore possible to develop plant growth regulators based on leucine to improve the heat resistance of P. notoginseng and other crops.

10.
Front Bioeng Biotechnol ; 11: 1156372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139048

RESUMEN

With the rapid development of multi-omics technologies and accumulation of large-scale bio-datasets, many studies have conducted a more comprehensive understanding of human diseases and drug sensitivity from multiple biomolecules, such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to systematically and comprehensively analyze the complex disease pathology and drug pharmacology. The molecularly targeted therapy-based approaches face some challenges, such as insufficient target gene labeling ability, and no clear targets for non-specific chemotherapeutic drugs. Consequently, the integrated analysis of multi-omics data has become a new direction for scientists to explore the mechanism of disease and drug. However, the available drug sensitivity prediction models based on multi-omics data still have problems such as overfitting, lack of interpretability, difficulties in integrating heterogeneous data, and the prediction accuracy needs to be improved. In this paper, we proposed a novel drug sensitivity prediction (NDSP) model based on deep learning and similarity network fusion approaches, which extracts drug targets using an improved sparse principal component analysis (SPCA) method for each omics data, and construct sample similarity networks based on the sparse feature matrices. Furthermore, the fused similarity networks are put into a deep neural network for training, which greatly reduces the data dimensionality and weakens the risk of overfitting problem. We use three omics of data, RNA sequence, copy number aberration and methylation, and select 35 drugs from Genomics of Drug Sensitivity in Cancer (GDSC) for experiments, including Food and Drug Administration (FDA)-approved targeted drugs, FDA-unapproved targeted drugs and non-specific therapies. Compared with some current deep learning methods, our proposed method can extract highly interpretable biological features to achieve highly accurate sensitivity prediction of targeted and non-specific cancer drugs, which is beneficial for the development of precision oncology beyond targeted therapy.

11.
Front Plant Sci ; 14: 1178069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123823

RESUMEN

Plants have evolved two layers of protection against biotic stress: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). The primary mechanism of ETI involves nucleotide-binding leucine-rich repeat immune receptors (NLRs). Although NLR genes have been studied in several plant species, a comprehensive database of NLRs across a diverse array of species is still lacking. Here, we present a thorough analysis of NLR genes across 100 high-quality plant genomes (PlantNLRatlas). The PlantNLRatlas includes a total of 68,452 NLRs, of which 3,689 are full-length and 64,763 are partial-length NLRs. The majority of NLR groups were phyletically clustered. In addition, the domain sequences were found to be highly conserved within each NLR group. Our PlantNLRatlas dataset is complementary to RefPlantNLR, a collection of NLR genes which have been experimentally confirmed. The PlantNLRatlas should prove helpful for comparative investigations of NLRs across a range of plant groups, including understudied taxa. Finally, the PlantNLRatlas resource is intended to help the field move past a monolithic understanding of NLR structure and function.

12.
Plant Divers ; 45(1): 104-116, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36876306

RESUMEN

Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.

13.
J Agric Food Chem ; 71(11): 4536-4549, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36893094

RESUMEN

Plants can recruit beneficial microbes to help improve their fitness under abiotic or biotic stress. Our previous studies found that Panax notoginseng could enrich beneficial Burkholderia sp. B36 in the rhizosphere soil under autotoxic ginsenoside stress. Here, we clarified that ginsenoside stress activated the phenylpropanoid biosynthesis and α-linolenic acid metabolism pathways of roots to increase the secretion of cinnamic acid, 2-dodecenoic acid, and 12-oxo-phytodienoic acid. These metabolites could promote the growth of B36. Importantly, cinnamic acid could simultaneously promote the chemotaxis and growth of B36, enhance the colonization of B36 in the rhizosphere, and eventually increase the survival rate of P. notoginseng. Overall, the plants could promote the growth and colonization of beneficial bacteria through key metabolites in root exudates under autotoxin stress. This finding will facilitate the practical application of beneficial bacteria in agricultural production and lead to successful and reproducible biocontrol efficacy by the exogenous addition of key metabolites.


Asunto(s)
Ginsenósidos , Transcriptoma , Ginsenósidos/metabolismo , Raíces de Plantas/metabolismo , Bacterias , Plantas , Exudados y Transudados , Rizosfera , Microbiología del Suelo
14.
Inorg Chem ; 62(5): 2440-2455, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36701493

RESUMEN

For phosphorescent materials, managing the triplet potential energy surface stands for controlling the phosphorescence quantum yield. However, due to the complexity and variability, the triplet potential energy surface can be managed with difficulty. In this work, a series of bimetallic Pt(II) complexes, namely Pt-1, Pt-1-1, Pt-1-2, Pt-2, Pt-3-5, and Pt-6-7, are employed as models to construct a relationship between the structures and triplet potential energy surfaces, aiming to achieve meaningful information to manage the triplet potential energy surface. On the basis of the results, it is observed that the triplet potential energy surface has an intimate connection with the structures of bimetallic Pt(II) complexes. In the case of the primordial Pt(II) complex, the triplet potential energy surface consists of two minimal points, illustrating various properties, which can largely affect the phosphorescence quantum yield. Once the intramolecular steric hindrance, restriction effect, and metallophilic interaction (Pt-Pd/Pd-Pd) are employed by tailoring the structures of primordial Pt(II) complexes, the triplet potential energy surface can be reconstructed via one minimal point-charactered short metal-metal distance, resulting in different photophysical properties. The relationship between the triplet potential energy surface and structure is essentially unveiled from the structural and electronic viewpoints. The conclusions originated from the structural and electronic investigations can be regarded as indicators to accurately and expediently predict the triplet potential energy surfaces of bimetallic Pt(II) complexes. The results presented here are helpful in addressing the designed strategies as they show that the triplet potential energy surfaces of bimetallic Pt(II) complexes can be properly tuned.

15.
J Biol Chem ; 299(1): 102720, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410440

RESUMEN

Cancer cells, including those of prostate cancer (PCa), often hijack intrinsic cell signaling to reprogram their metabolism. Part of this reprogramming includes the activation of de novo synthesis of fatty acids that not only serve as building blocks for membrane synthesis but also as energy sources for cell proliferation. However, how de novo fatty acid synthesis contributes to PCa progression is still poorly understood. Herein, by mining public datasets, we discovered that the expression of acetyl-CoA carboxylase alpha (ACACA), which encodes acetyl-CoA carboxylase 1 (ACC1), was highly expressed in human PCa. In addition, patients with high ACACA expression had a short disease-free survival time. We also reported that depletion of ACACA reduced de novo fatty acid synthesis and PI3K/AKT signaling in the human castration-resistant PCa (CRPC) cell lines DU145 and PC3. Furthermore, depletion of ACACA downregulates mitochondrial beta-oxidation, resulting in mitochondrial dysfunction, a reduction in ATP production, an imbalanced NADP+/NADPhydrogen(H) ratio, increased reactive oxygen species, and therefore apoptosis. Reduced exogenous fatty acids by depleting lipid or lowering serum supplementation exacerbated both shRNA depletion and pharmacological inhibition of ACACA-induced apoptosis in vitro. Collectively, our results suggest that inhibition of ectopic ACACA, together with suppression of exogenous fatty acid uptake, can be a novel strategy for treating currently incurable CRPC.


Asunto(s)
Acetil-CoA Carboxilasa , Ácidos Grasos , Mitocondrias , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral
16.
Life Sci ; 313: 121214, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36442527

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Airway inflammation and remodeling are the two key processes involved in COPD pathogenesis. However, the key pathogenic genes driving COPD development have not been revealed. This study aims to identify and validate hub gene(s) underlying COPD development through bioinformatics analysis and experimental validation. METHODS: Three lung tissue sequencing datasets of the COPD (including GSE38974, GSE103174, and GSE106986) were analyzed. Further, differentially expressed genes (DEGs) were used to compare patients with COPD with non-COPD individuals, and the Robust Rank Aggregation (RRA) analysis was also performed. Results revealed a series of potential pathogenic genes of COPD. DEGs were subjected to KEGG, GO, and GSEA analyses. The scRNA dataset of human lung tissues (Human Lung Cell Atlas), and human primary airway epithelial cells (GSE134147) were used to identify the cell subtype localization. The qRT-PCR assay was performed in the human lung tissues, COPD mice model, and primary bronchial epithelial cells at the air-liquid interface (ALI) under cigarette smoke extract (CSE) stimulation to verify the expression of the hub genes. LASSO and GLM analysis with the hub genes were performed to identify the most critical gene. RNA-seq was performed after knocking down the critical gene using siRNA in HBECs at ALI. The potential role of the critical gene was confirmed through qRT-PCR, Western blot, and Immunofluorescence (IF) assays. RESULTS: A total of 98 genes were significantly and differently expressed in 3 GEO datasets. The KEGG and GO analyses showed that most of these genes are responsible for inflammation, immunity, and cell proliferation. The core gene set including 15 genes was screened out and consequently, the MMP1 was the most likely responsible for the progression of COPD. Moreover, we confirmed that MMP1 is significantly related to inflammatory effects and cilia function in human bronchial epithelial cells cultured at the air-liquid interface (ALI). CONCLUSION: In summary, we confirmed that inflammation and cell proliferation are potentially critical processes in COPD occurrence and development. A total of 15 potential hub genes were identified among which MMP1 was the most likely gene responsible for the development of COPD. Therefore, MMP1 is a potential molecular target of COPD therapy.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Enfermedad Pulmonar Obstructiva Crónica , Animales , Ratones , Humanos , Metaloproteinasa 1 de la Matriz/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón/metabolismo , Pruebas Genéticas , Inflamación/patología
17.
Front Immunol ; 14: 1334597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264657

RESUMEN

Introduction: Memory T (Tm) cells are a subpopulation of immune cells with great heterogeneity. Part of this diversity came from T cells that were primed with different viruses. Understanding the differences among different viral-specific Tms will help develop new therapeutic strategies for viral infections. Methods: In this study, we compared the transcriptome of Tm cells that primed with CMV, EBV and SARS-CoV-2 with single-cell sequencing and studied the similarities and differences in terms of subpopulation composition, activation, metabolism and transcriptional regulation. Results: We found that CMV is marked by plentiful cytotoxic Temra cells, while EBV is more abundant in functional Tem cells. More importantly, we found that CD28 and CTLA4 can be used as continuous indicators to interrogate the antiviral ability of T cells. Furthermore, we proposed that REL is a main regulatory factor for CMV-specific T cells producing cytokines and plays an antiviral role. Discussion: Our data gives deep insight into molecular characteristics of Tm subsets from different viral infection, which is important to understand T cell immunization. Furthermore, our results provide basic background knowledges for T cell based vaccine development in future.


Asunto(s)
Infecciones por Citomegalovirus , Virosis , Humanos , Diferenciación Celular , Células T de Memoria , Antivirales
18.
Cell Discov ; 8(1): 136, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543767

RESUMEN

The effects of different SARS-CoV-2 vaccinations and variant infection histories on imprinting population immunity and their influence on emerging escape mutants remain unclear. We found that Omicron (BA.1) breakthrough infection, regardless of vaccination with two-dose mRNA vaccines (M-M-o) or two-dose inactivated vaccines (I-I-o), led to higher neutralizing antibody levels against different variants and stronger T-cell responses than Delta breakthrough infection after two-dose inactivated vaccine vaccination (I-I-δ). Furthermore, different vaccination-infection patterns imprinted virus-specific T-cell differentiation; M-M-ο showed higher S/M/N/E-specific CD4+ T cells and less portion of virus-specific CD45RA+CD27-CD8+ T cells by ex vivo assay. Breakthrough infection groups showed higher proliferation and multi-function capacity by in vitro assay than three-dose inactivated vaccine inoculated group (I-I-I). Thus, under wide vaccination coverage, the higher immunogenicity with the Omicron variant may have helped to eliminate the population of Delta variant. Overall, our data contribute to our understanding of immune imprinting in different sub-populations and may guide future vaccination programs.

19.
Microbiol Spectr ; 10(6): e0241822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445116

RESUMEN

Negative plant-soil feedback (NPSF) due to the buildup of soilborne pathogens in soil is a major obstacle in sustainable agricultural systems. Beneficial rhizosphere microfloras are recruited by plants, and mediating this has become a strategic priority to manipulate plant health. Here, we found that foliar infection of Panax notoginseng by Alternaria panax changed plant-soil feedback from negative to positive. Foliar infection modified the rhizosphere soil microbial community and reversed the direction of the buildup of the soilborne pathogen Ilyonectria destructans and beneficial microbes, including Trichoderma, Bacillus, and Streptomyces, in rhizosphere soil. These beneficial microbes not only showed antagonistic ability against the pathogen I. destructans but also enhanced the resistance of plants to A. panax. Foliar infection enhanced the exudation of short- and long-chain organic acids, sugars, and amino acids from roots. In vitro and in vivo experiments validated that short- and long-chain organic acids and sugars play dual roles in simultaneously suppressing pathogens but enriching beneficial microbes. In summary, foliar infection could change root secretion to drive shifts in the rhizosphere microbial community to enhance soil health, providing a new strategy to alleviate belowground disease in plants through aboveground inducement. IMPORTANCE Belowground soilborne disease is the main factor limiting sustainable agricultural production and is difficult to manage due to the complexity of the soil environment. Here, we found that aboveground parts of plants infected by foliar pathogens could enhance the secretion of organic acids, sugars, and amino acids in root exudates to suppress soilborne pathogens and enrich beneficial microbes, eventually changing the plant and soil feedback from negative to positive and alleviating belowground soilborne disease. This is an exciting strategy by which to achieve belowground soilborne disease management by manipulating the aboveground state through aboveground stimulation.


Asunto(s)
Microbiota , Suelo , Suelo/química , Rizosfera , Raíces de Plantas , Microbiología del Suelo , Microbiota/fisiología , Exudados y Transudados , Plantas , Aminoácidos
20.
PLoS One ; 17(11): e0276979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36327240

RESUMEN

MEME (Multiple Em for Motif Elicitation) is the most commonly used tool to identify motifs within deoxyribonucleic acid (DNA) or protein sequences. However, the results generated by the MEMEare saved using file formats .xml and .txt, which are difficult to read, visualize, or integrate with other widely used phylogenetic tree packages, such as ggtree. To overcome this problem, we developed the ggmotif R package, which provides two easy-to-use functions that can facilitate the extraction and visualization of motifs from the results files generated by the MEME. ggmotif can extract the information of the location of motif(s) on the corresponding sequence(s) from the .xml format file and visualize it. Additionally, the data extracted by ggmotif can be easily integrated with the phylogenetic data. On the other hand, ggmotif can obtain the sequence of each motif from the .txt format file and draw the sequence logo with the function ggseqlogo from the ggseqlogo R package. The ggmotif R package is freely available (including examples and vignettes) from GitHub at https://github.com/lixiang117423/ggmotif or from CRAN at https://CRAN.R-project.org/package=ggmotif.


Asunto(s)
Programas Informáticos , Filogenia , Posición Específica de Matrices de Puntuación , Secuencia de Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA