Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 596, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926764

RESUMEN

BACKGROUND: Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS: Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS: CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION: A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Proliferación Celular , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , MicroARNs , ARN Circular , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Persona de Mediana Edad , Masculino , Carcinogénesis/genética , Carcinogénesis/patología , Movimiento Celular/genética , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX5/genética , Oncogenes/genética , Secuencia de Bases , Progresión de la Enfermedad , Invasividad Neoplásica , Reproducibilidad de los Resultados
2.
Environ Sci Technol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900493

RESUMEN

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.

3.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842635

RESUMEN

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Metilación , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Recombinación Homóloga , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Reparación del ADN , Cromatina/metabolismo , Cromatina/genética
4.
Pharmacol Res ; 205: 107235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815879

RESUMEN

Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1ß was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1ß and suggested that silencing USP7 may be a therapeutic strategy for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Homeostasis , Ratones Endogámicos C57BL , Peptidasa Específica de Ubiquitina 7 , Animales , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Mitocondrias Cardíacas/metabolismo , Línea Celular , Ratones Noqueados , Ratas , Mitocondrias/metabolismo , Humanos
5.
Int J Cardiol ; 408: 132149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723908

RESUMEN

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.


Asunto(s)
Animales Recién Nacidos , Ratones Noqueados , Miocitos Cardíacos , Peptidasa Específica de Ubiquitina 7 , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Biogénesis de Organelos , Dinámicas Mitocondriales/fisiología , Dinámicas Mitocondriales/genética
6.
Plant Dis ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764344

RESUMEN

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

7.
ACS Nano ; 18(20): 13150-13163, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726816

RESUMEN

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn-Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g-1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.

8.
Polymers (Basel) ; 16(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794581

RESUMEN

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.

9.
Biochem Biophys Res Commun ; 717: 150045, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718572

RESUMEN

The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.


Asunto(s)
Regulación hacia Abajo , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Ubiquitina , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
Plant J ; 119(1): 348-363, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38606539

RESUMEN

The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.


Asunto(s)
Genoma de Planta , Haplotipos , Hibridación Genética , Poliploidía , Genoma de Planta/genética , Haplotipos/genética , Filogenia , Especiación Genética , Evolución Molecular
11.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1632-1640, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621948

RESUMEN

This study aims to explore the effects of tetramethylpyrazine(TMP) on pharmacokinetics in plasma and brain dialysate and neuropathic pain in the rat model of partial sciatic nerve injury(SNI), and to investigate the correlation between the analgesic effect of TMP and its concentrations in the plasma and brain dialysate. Male SD rats were randomized into Sham, SNI, and SNI+TMP groups. Mechanical stimulation with von frey filaments and cold spray method were employed to evaluate the mechanical sensitivity and cold sensitivity of rats. Another two groups, Sham+TMP and SNI+TMP, were used to intubate the common jugular vein and implant microdialysis probes into the anterior cingulate gyrus(ACC), respectively.After intraperitoneal injection of TMP at a dose of 80 mg·kg~(-1), automatic blood collection and intracerebral microdialysis(perfusion rate of 1 µL·min~(-1)) systems were used to collect the blood and brain dialysate for 24 h. HSS T3 C_(18) reversed-phase chromatographic column(2.1 mm×50 mm, 2.5 µm) was used for liquid chromatographic separation. Gradient elution was carried out with the mobile phase of methanol-water(containing 0.005% formic acid) at a flow rate of 0.25 mL·min~(-1). Electrospray ion source was used for mass spectrometry, and the scanning mode was multi-reaction monitoring under the positive ion mode. The ion pairs for quantitative analysis were TMP m/z 137/122 and aspirin m/z 179/137, respectively. DAS 2.11 was used to calculate the pharmacokinetic parameters. The optimal time of TMP to exert the analgesia effect and inhibit cold pain sensitivity was 60 min after treatment. The TMP in the plasma and brain dialysate of SNI rats showed the T_(max) of 15 min and 30 min, the C_(max) of(2 866.43±135.39) and(1 462.14±197.38) µg·L~(-1), the AUC_(0-t) of(241 463.30±28 070.31) and(213 115.62±32 570.07) µg·min·L~(-1), the MRT_(0-t) of(353.13±47.73) and(172.16±12.72) min, and the CL_Z of 0.73 and 0.36 L·min·kg~(-1), respectively. The analgesic effect of TMP had a significant correlation with the blood drug concentration in the ACC, which indicated that this method was suitable for the detection of TMP in rat plasma and brain dialysate. The method is accurate, reliable, and sensitive and can realize the important value of the application of correlation analysis theory of "automatic blood collection-microdialysis/PK-PD" in the research on neuropathic pain.


Asunto(s)
Encéfalo , Neuralgia , Pirazinas , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Nervio Ciático , Analgésicos
12.
Front Oncol ; 14: 1369346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585007

RESUMEN

Purpose: Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) exhibit phenotypic similarities with JAK/STAT-unmutated idiopathic erythrocytosis and thrombocytosis (IE/IT). We aimed to develop a clinical diagnostic model to discern MPN and IE/IT. Methods: A retrospective study was performed on 77 MPN patients and 32 IE/IT patients in our center from January 2018 to December 2023. We investigated the role of hemogram, cytokine and spleen size in differentiating MPN and IE/IT among newly onset erythrocytosis and thrombocytosis patients. Independent influencing factors were integrated into a nomogram for individualized risk prediction. The calibration and discrimination ability of the model were evaluated by concordance index (C-index), calibration curve. Results: MPN had significantly higher TNF-α level than IE/IT, and the TNF-α level is correlated with MF-grade. Multivariable analyses revealed that TNF-α, PLT count, age, size of spleen were independent diagnostic factors in differentiating MPN and IE/IT. Nomograms integrated the above 4 factors for differentiating MPN and IE/IT was internally validated and had good performance, the C-index of the model is 0.979. Conclusion: The elevation of serum TNF-α in MPN patients is of diagnostic significance and is correlated with the severity of myelofibrosis. The nomogram incorporating TNF-α with age, PLT count and spleen size presents a noteworthy tool in the preliminary discrimination of MPN patients and those with idiopathic erythrocytosis or thrombocytosis. This highlights the potential of cytokines as biomarkers in hematologic disorders.

13.
Int Immunopharmacol ; 133: 112014, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615378

RESUMEN

BACKGROUND: Refractoriness and relapse after chimeric antigen receptor T-cell therapy have emerged as major challenges for immunotherapy of aggressive large B-cell lymphoma. Thus far, there is no consensus on how to address treatment failure and whether to administer maintenance therapy following CAR-T cell therapy. METHODS: From August 2017 through November 2022, 52 patients with refractory/relapsed aggressive LBCL who had a high risk of resistance to CAR-T cell therapy were given chidamide in combination with a PD-1 inhibitor as maintenance therapy following either CAR19/22 T-cell cocktail therapy or CAR19/22 T-cell cocktail therapy plus autologous stem cell transplantation (ASCT). Another 52 aggressive LBCL patients who had comparable baseline characteristics and received similar therapeutic regimens but did not receive any interventions following CAR-T cell therapy or CAR-T cell therapy plus ASCT were regarded as the control group to evaluate the efficacy and safety of the combination of chidamide and a PD-1 inhibitor. RESULTS: Among the 52 patients who received chidamide and a PD-1 inhibitor as maintenance therapy, with a median follow-up of 26.5 months (range: 1.1-53.8), neither the median progression-free survival (PFS) nor overall survival (OS) was reached, and the expected 2-year OS and PFS rates were 89 % and 77 %, respectively, which were superior to those of the control group (p < 0.001). Long-term chidamide administration and a specific genetic subtype of EZB were strongly associated with a better response after chidamide plus PD-1 blockade therapy. Additionally, long-term chidamide administration was significantly associated with prolonged persistence and reactivation of CD19-directed CAR-T cells in the peripheral blood. Adverse effects (AEs) were moderate and reversible, and no treatment-related deaths occurred. CONCLUSION: Our results indicate that the combination of chidamide and PD-1 blockade as maintenance therapy could improve the outcomes of aggressive LBCL patients at high risk of failing CAR-T cell therapy.


Asunto(s)
Aminopiridinas , Benzamidas , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Receptor de Muerte Celular Programada 1 , Humanos , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/métodos , Benzamidas/uso terapéutico , Aminopiridinas/uso terapéutico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/mortalidad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Receptores Quiméricos de Antígenos/inmunología
14.
Huan Jing Ke Xue ; 45(5): 2715-2726, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629535

RESUMEN

Riparian zones are typical fragile and sensitive ecological areas. Fluctuations in water level are the main factor affecting the soil environment in these zones, and vegetation restoration is considered an important means of soil conservation there. However, the interactive effects of water level fluctuations and vegetation restoration on the soil microbial community structure in the reservoir riparian zone remain unclear. Therefore, we selected abandoned grassland and artificial forestland at different water level elevations as research objects in the riparian zone of the Three Gorges Reservoir. We used 16S rRNA high-throughput sequencing technology to explore the composition and diversity of soil prokaryotic microbial communities and investigated the main environmental factors driving the soil microbial community structure. The results showed that the α diversity of soil prokaryotes was the highest at the low water level of the riparian zone. The Pielou_e index, Shannon index, and Simpson index at the 163 m elevation were significantly higher than those at the 168 m elevation, and the Chao1 index and Shannon index were significantly higher than those at the 173 m elevation. However, no significant difference was found in the soil microbial community α diversity between abandoned grassland and artificial forestland. At the same time, water level fluctuations and vegetation restoration had significant effects on the community composition of soil prokaryotic microorganisms, and there were significant differences in biomarker categories in different study sites. Notably, the effects of vegetation restoration types on the soil prokaryotic microbial community structure were stronger than that of water level fluctuations. In addition, the results of hierarchical segmentation showed that soil pH was the main driving factor for the change in soil prokaryotic microbial community structure in the Three Gorges Reservoir. These results deepen our understanding of the variations in microbial community structure in the reservoir riparian zone and provide scientific reference for the restoration and reconstruction of the riparian zone ecosystem.


Asunto(s)
Microbiota , Suelo , Suelo/química , Ecosistema , Agua , ARN Ribosómico 16S , Bosques , Microbiología del Suelo
15.
PLoS One ; 19(4): e0301787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626084

RESUMEN

BACKGROUND AND OBJECTIVES: Nurses tend to exhibit higher rates of presenteeism compared to other professions. Presenteeism can cause the work performance of nurses to suffer, jeopardizing their own and their patients' safety and leading to decreased quality of care and increased risks of errors. However, there is a lack of a validated assessment tool for presenteeism in Taiwan. Thus, the purpose of this study was to develop a Nursing Staff Presenteeism Scale (NSPS). METHODS: To develop questionnaire items, participants from three medical centers in Taiwan were recruited. Through convenience sampling, 500 nurses who met the selection criteria were recruited from November 1, 2022 to January 18, 2023. The scale was developed based on a systematic literature review, a previous study, and expert consultation, and 50 items were initially generated. After removing three items that lacked discriminative power, the reliability and validity of the remaining 47 items were evaluated. An exploratory factor analysis was used to establish the construct validity. A confirmatory factor analysis and structural equation modeling for cross-validation were used to assess relationships of factors with items and the overall NSPS. RESULTS: The final scale consisted of 44 items assessed on a five-point Likert scale that loaded onto three different factors of physical or mental discomfort (18 items), work performance (15 items), and predisposing factors (11 items). These three factors were found to explain 63.14% of the cumulative variance. Cronbach's alpha for the overall final scale was 0.953. The item-to-total correlation coefficients ranged 0.443 to 0.795. CONCLUSIONS: The NSPS exhibited satisfactory reliability and validity. It can be applied to assess the level of presenteeism among clinical nurses and provide medical institutions with information regarding the causes of presenteeism, predisposing factors, and the impacts of presenteeism on their work performance to enhance the safety and quality of clinical care.


Asunto(s)
Personal de Enfermería en Hospital , Presentismo , Humanos , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
16.
Opt Express ; 32(5): 8205-8213, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439483

RESUMEN

Thermal crosstalk and current crowding effects are pressing issues that significantly impact the beam quality and efficiency of vertical-cavity surface-emitting laser (VCSEL) arrays. In this paper, by taking advantage of the excellent current transmission characteristics of graphene, what we believe to be a novel VCSEL array based on graphene electrode is designed to realize vertical current injections. The series resistance and self-heating of arrays are reduced by controlling the transport direction of the current, effectively suppressing the thermal crosstalk effect. Furthermore, high array beam quality is obtained by optimizing the current density distribution in active regions. Ultimately, the high-power quasi-single mode emission of VCSEL arrays is achieved by introducing graphene electrodes (Gr-VCSEL array) designs. Compared to traditional VCSEL arrays, the 10 × 10 Gr-VCSEL array demonstrates a 41% reduction in series resistance, a side mode suppression ratio of 32 dB, and a divergence angle around 12 °. This structure simultaneously achieves quasi-single mode emission and effectively suppresses the thermal crosstalk effect, providing a new method for the development of high-beam quality VCSEL arrays.

17.
J Alzheimers Dis ; 98(3): 941-955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489185

RESUMEN

Background: As a prodromal stage of dementia, significant emphasis has been placed on the identification of modifiable risks of mild cognitive impairment (MCI). Research has indicated a correlation between exposure to air pollution and cognitive function in older adults. However, few studies have examined such an association among the MCI population inChina. Objective: We aimed to explore the association between air pollution exposure and MCI risk from the Hubei Memory and Aging Cohort Study. Methods: We measured four pollutants from 2015 to 2018, 3 years before the cognitive assessment of the participants. Logistic regression models were employed to calculate odds ratios (ORs) to assess the relationship between air pollutants and MCI risk. Results: Among 4,205 older participants, the adjusted ORs of MCI risk for the highest quartile of PM2.5, PM10, O3, and SO2 were 1.90 (1.39, 2.62), 1.77 (1.28, 2.47), 0.56 (0.42, 0.75), and 1.18 (0.87, 1.61) respectively, compared with the lowest quartile. Stratified analyses indicated that such associations were found in both males and females, but were more significant in older participants. Conclusions: Our findings are consistent with the growing evidence suggesting that air pollution increases the risk of mild cognitive decline, which has considerable guiding significance for early intervention of dementia in the older population. Further studies in other populations and broader geographical areas are warranted to validate these findings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Disfunción Cognitiva , Demencia , Masculino , Femenino , Humanos , Anciano , Estudios de Cohortes , Estudios de Casos y Controles , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Disfunción Cognitiva/epidemiología , China/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis
18.
Angew Chem Int Ed Engl ; 63(17): e202400424, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38433094

RESUMEN

Halide superionic conductors (SICs) are drawing significant research attention for their potential applications in all-solid-state batteries. A key challenge in developing such SICs is to explore and design halide structural frameworks that enable rapid ion movement. In this work, we show that the close-packed anion frameworks shared by traditional halide ionic conductors face intrinsic limitations in fast ion conduction, regardless of structural regulation. Beyond the close-packed anion frameworks, we identify that the non-close-packed anion frameworks have great potential to achieve superionic conductivity. Notably, we unravel that the non-close-packed UCl3-type framework exhibit superionic conductivity for a diverse range of carrier ions, including Li+, Na+, K+, and Ag+, which are validated through both ab initio molecular dynamics simulations and experimental measurements. We elucidate that the remarkable ionic conductivity observed in the UCl3-type framework structure stems from its significantly more distorted site and larger diffusion channel than its close-packed counterparts. By employing the non-close-packed anion framework as the key feature for high-throughput computational screening, we also identify LiGaCl3 as a promising candidate for halide SICs. These discoveries provide crucial insights for the exploration and design of novel halide SICs.

19.
Natl Sci Rev ; 11(4): nwae028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425424

RESUMEN

Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.

20.
Saf Health Work ; 15(1): 110-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38496289

RESUMEN

Numerous studies have indicated that organic fertilizers (OFer) might contain heavy metals (HMs) that present health risks to organic farmers (OFar). This study compared the concentrations of six HMs (Zn, Ni, Cd, Cu, Pb, Cr) in the blood of two distinct groups of farmers: 30 OFar from a designated organic area in eastern Taiwan, and 74 conventional farmers (CFar) from neighboring non-organic designated regions. The findings revealed that the OFar exhibited higher levels of Zn (1202.70 ± 188.74 µg/L), Cr (0.20 ± 0.09 µg/L), and Ni (2.14 ± 1.48 µg/L) in their blood compared to the CFar (988.40 ± 163.16 µg/L, 0.18 ± 0.15 µg/L, and 0.77 ± 1.23 µg/L), respectively. The disparities in Zn, Cr, and Ni levels were measured at 214.3 µg/L, 0.02 µg/L, and 1.37 µg/L, respectively. Furthermore, among the OFar, those who utilized green manures (GM) displayed significantly elevated blood levels of Zn (1279.93 ± 156.30 µg/L), Cr (0.24 ± 0.11 µg/L), and Ni (1.94 ± 1.38 µg/L) compared to individuals who exclusively employed chemical fertilizers (CFer) (975.42 ± 165.35 µg/L, 0.19 ± 0.16 µg/L, and 0.74 ± 1.20 µg/L), respectively. The differences in Zn, Cr, and Ni levels were measured at 304.51 µg/L, 0.05 µg/L, and 1.20 µg/L, respectively. As a result, OFar should be careful in choosing OFer and avoid those that may have heavy metal contamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA