Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nanotechnology ; 35(24)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38387088

RESUMEN

The recombination of photoexcited electron-hole pairs greatly limits the degradation performance of photocatalysts. Ultrasonic cavitation and internal electric field induced by the piezoelectric effect are helpful for the separation of electron-hole pairs and degradation efficiency. The activated foam carbon (AFC) owing to its high surface area is often used as the substrate to grow catalysts to provide more reactive active sites. In this work, CuO@BaTiO3(CuO@BTO) heterostructure is prepared by hydrothermal method on the surface of AFC to investigate the ultrasonic piezoelectric catalysis effect. X-ray diffraction (XRD), Raman spectroscopy, energy dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of CuO-BTO/AFC composite. It is found that the CuO-BTO/AFC composite exhibits excellent piezo-catalytic performance for the degradation of organics promoted by ultrasonic vibration. The CuO-BTO/AFC composite can decompose methyl orange and methylene blue with degradation efficiency as high as 93.9% and 97.6% within 25 min, respectively. The mechanism of piezoelectricity enhanced ultrasound supported catalysis effect of system CuO-BTO/AFC is discussed. The formed heterojunction structure between BTO and CuO promotes the separation of positive and negative charges caused by the piezoelectric effect.

2.
Nat Commun ; 15(1): 176, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167809

RESUMEN

Despite the recent achievements in urea electrosynthesis from co-reduction of nitrogen wastes (such as NO3-) and CO2, the product selectivity remains fairly mediocre due to the competing nature of the two parallel reduction reactions. Here we report a catalyst design that affords high selectivity to urea by sequentially reducing NO3- and CO2 at a dynamic catalytic centre, which not only alleviates the competition issue but also facilitates C-N coupling. We exemplify this strategy on a nitrogen-doped carbon catalyst, where a spontaneous switch between NO3- and CO2 reduction paths is enabled by reversible hydrogenation on the nitrogen functional groups. A high urea yield rate of 596.1 µg mg-1 h-1 with a promising Faradaic efficiency of 62% is obtained. These findings, rationalized by in situ spectroscopic techniques and theoretical calculations, are rooted in the proton-involved dynamic catalyst evolution that mitigates overwhelming reduction of reactants and thereby minimizes the formation of side products.

3.
ACS Appl Mater Interfaces ; 14(47): 52857-52867, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383731

RESUMEN

The serpentine germanate materials are promising oxygen evolution reaction (OER) electrocatalysts due to their unique layered crystal structure and electronic structure. However, the catalytic activities still need to be improved to satisfy the practical applications. Adjusting the d-band center of metal active site to balance the adsorption and desorption of intermediates is considered an effective approach to improve the OER activity. In this work, an element dopant strategy was proposed to optimize the d-band state of Ni3Ge2O5(OH)4 serpentine to improve the OER activity. The density functional theory calculations revealed that Fe3+ doping increased the d-band center of the Ni3Ge2O5(OH)4 serpentine, which optimized the adsorption strength of intermediates on surface Ni and Fe atoms so that the Fe3+ doped Ni3Ge2O5(OH)4 (Ni2.25Fe0.75Ge2O5(OH)4) exhibited much reduced Gibbs free energy changes in the rate-determining step compared with pristine serpentine. Inspired by the theoretical calculations, the NixFe3-xGe2O5(OH)4 nanosheets with different amounts of doped Fe3+ were designed and synthesized. The structural characterizations indicated that Fe3+ was successfully doped into Ni3Ge2O5(OH)4 and replaced the Ni2+. The Fe3+ doped NixFe3-xGe2O5(OH)4 nanosheets showed greatly improved OER activity than Ni3Ge2O5(OH)4 and Fe3Ge2O5(OH)4. Further electrochemical analysis illustrated that Fe3+ doping reduced the adsorptive/formative resistance of intermediates and the charge transfer resistance and facilitated the kinetic process of OER. The in situ Raman spectra indicated that the Fe3+ doped Ni3Ge2O5(OH)4 possesses a more active Ni-O bond than pristine Ni3Ge2O5(OH)4. This work provides an effective strategy to tune the d-band center of serpentines for efficient electrocatalytic OER.

4.
Small Methods ; 5(11): e2100460, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34927956

RESUMEN

Ammonia is an essential chemical for agriculture and industry. To date, NH3 is mainly supplied by the traditional Haber-Bosch process, which is operated under high-temperature and high-pressure in a centralized way. To achieve ammonia production in an environmentally benign way, electrochemical NH3 synthesis under ambient conditions has become the frontier of energy and chemical conversion schemes, as it can be powered by renewable energy and operates in a decentralized way. The recent progress on developing different strategies for NH3 production, including 1) classic NH3 synthesis pathways over nanomaterials; 2) the Mars-van Krevelen (MvK) mechanism over metal nitrides (MNx ); 3) reducing the nitrate into NH3 over Cu-based nanomaterial; and 4) metal-N2 battery release of NH3 from Lix M. Moreover, the most recent advances in engineering strategies for developing highly active materials and the design of the reaction systems for NH3 synthesis are covered.

5.
RSC Adv ; 11(46): 28908-28911, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35478558

RESUMEN

Effective separation of photoexcited carriers and chemisorption of the N2 molecule are two key issues to efficient nitrogen photofixation. The spatial charge separation of BiVO4 with anisotropic exposed facets, namely the transfer of photoexcited electrons and holes to {010} and {110} facets, respectively, helps to enhance the separation ability of photogenerated carriers. Theoretical calculation results predict that a surface oxygen vacancy is easier to form on the (010) facet than on the (110) facet of BiVO4. Accordingly, in this study, enhanced N2 photofixation performance has been achieved for the first time by tuning the exposure of {010} facets of BiVO4.

6.
Angew Chem Int Ed Engl ; 59(47): 20909-20913, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32761724

RESUMEN

The practical applications of non-aqueous lithium-oxygen batteries are impeded by large overpotentials and unsatisfactory cycling durability. Reported here is that commonly encountered fatal problems can be efficiently solved by using a carbon- and binder-free electrode of titanium coated with TiO2 nanotube arrays (TNAs) and gold nanoparticles (AuNPs). Ultraviolet irradiation of the TNAs generates positively charged holes, which efficiently decompose Li2 O2 and Li2 CO3 during recharging, thereby reducing the overpotential to one that is near the equilibrium potential for Li2 O2 formation. The AuNPs promote Li2 O2 formation, resulting in a large discharge capacity. The electrode exhibits excellent stability with about 100 % coulombic efficiency during continuous cycling of up to 200 cycles, which is due to the carbon- and binder-free composition. This work reveals a new strategy towards the development of highly efficient oxygen electrode materials for lithium-oxygen batteries.

7.
Research (Wash D C) ; 2020: 3750314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550602

RESUMEN

Solar-driven N2 fixation using a photocatalyst in water presents a promising alternative to the traditional Haber-Bosch process in terms of both energy efficiency and environmental concern. At present, the product of solar N2 fixation is either NH4 + or NO3 -. Few reports described the simultaneous formation of ammonia (NH4 +) and nitrate (NO3 -) by a photocatalytic reaction and the related mechanism. In this work, we report a strategy to photocatalytically fix nitrogen through simultaneous reduction and oxidation to produce NH4 + and NO3 - by W18O49 nanowires in pure water. The underlying mechanism of wavelength-dependent N2 fixation in the presence of surface defects is proposed, with an emphasis on oxygen vacancies that not only facilitate the activation and dissociation of N2 but also improve light absorption and the separation of the photoexcited carriers. Both NH4 + and NO3 - can be produced in pure water under a simulated solar light and even till the wavelength reaching 730 nm. The maximum quantum efficiency reaches 9% at 365 nm. Theoretical calculation reveals that disproportionation reaction of the N2 molecule is more energetically favorable than either reduction or oxidation alone. It is worth noting that the molar fraction of NH4 + in the total product (NH4 + plus NO3 -) shows an inverted volcano shape from 365 nm to 730 nm. The increased fraction of NO3 - from 365 nm to around 427 nm results from the competition between the oxygen evolution reaction (OER) at W sites without oxygen vacancies and the N2 oxidation reaction (NOR) at oxygen vacancy sites, which is driven by the intrinsically delocalized photoexcited holes. From 427 nm to 730 nm, NOR is energetically restricted due to its higher equilibrium potential than that of OER, accompanied by the localized photoexcited holes on oxygen vacancies. Full disproportionation of N2 is achieved within a range of wavelength from ~427 nm to ~515 nm. This work presents a rational strategy to efficiently utilize the photoexcited carriers and optimize the photocatalyst for practical nitrogen fixation.

8.
Angew Chem Int Ed Engl ; 59(38): 16594-16601, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32519452

RESUMEN

Aqueous zinc (Zn) batteries (AZBs) are widely considered as a promising candidate for next-generation energy storage owing to their excellent safety features. However, the application of a Zn anode is hindered by severe dendrite formation and side reactions. Herein, an interfacial bridged organic-inorganic hybrid protection layer (Nafion-Zn-X) is developed by complexing inorganic Zn-X zeolite nanoparticles with Nafion, which shifts ion transport from channel transport in Nafion to a hopping mechanism in the organic-inorganic interface. This unique organic-inorganic structure is found to effectively suppress dendrite growth and side reactions of the Zn anode. Consequently, the Zn@Nafion-Zn-X composite anode delivers high coulombic efficiency (ca. 97 %), deep Zn plating/stripping (10 mAh cm-2 ), and long cycle life (over 10 000 cycles). By tackling the intrinsic chemical/electrochemical issues, the proposed strategy provides a versatile remedy for the limited cycle life of the Zn anode.

9.
J Phys Chem Lett ; 10(22): 6984-6989, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31659906

RESUMEN

A boron (B) center, which has an electronic structure mimicking the filled and empty d orbitals in transition metals, can effectively activate the triple bond in N2 so as to catalyze the nitrogen reduction reaction (NRR). Here, by means of density functional theory, we have systematically investigated the catalytic performance of a single B atom decorated on two-dimensional transition metal carbides (MXenes). The B-doped Mo2CO2 and W2CO2 MXenes exhibit outstanding catalytic activity and selectivity with limiting potentials of -0.20 and -0.24 V, respectively. Importantly, we have found that, although a high tendency of B-to-adsorbate electron donation can promote the hydrogenation of *N2 to *N2H, it would also severely hamper the *NH2 to *NH3 conversion due to the strong B-N bonding. Such an electron-donation effect can be reasonably tuned by the transition metal in the MXene substrate, which enables us to achieve optimized catalytic performance with a certain moderate degree of electron donation.

10.
ChemSusChem ; 11(20): 3631-3639, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30136758

RESUMEN

The electrocatalytic performance and cost of oxygen reduction reaction (ORR) catalysts are crucial to many renewable energy conversion and storage systems/devices. Recently, transition-metal/nitrogen-doping carbon catalysts (M-N-C) have attracted tremendous attention due to their low cost and excellent catalytic activities; however, they are restricted in large-scale commercial applications by complex preparation processing. Here, a facile strategy to prepare Co-N-C catalysts has been developed. A kind of superabsorbent resin normally found in diapers, poly(acrylic acid-acrylamide), is used to adsorb a transition-metal cobalt salt and a pyrolysis strategy at 800 °C under an argon atmosphere is followed. The resin simultaneously plays a multiple role, which includes structural support, dispersing cobalt ions by coordinate bonds, and providing a carbon and nitrogen source. Attributed to the conductive carbon frameworks and abundant catalytic sites, the Co-N-C catalyst exhibits an excellent electrocatalytic performance. High onset potential (0.96 V vs. reversible hydrogen electrode, RHE), half-wave potential (0.80 V vs. RHE), and a large diffusion-limited current density (4.65 mA cm-2 ) are achieved for the ORR, which are comparable or superior to the commercial 20 % Pt/C and reported M-N-C ORR electrocatalysts. This work provides a universal dispersion technology for Co-N-C catalyst, which makes it a very promising candidate toward the ORR.

11.
ACS Appl Mater Interfaces ; 9(34): 29021-29029, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28791868

RESUMEN

A niobium-doped titanium dioxide (Nb:TiO2, NTO) film is a promising candidate material for indium-free transparent conductive oxide (TCO) films. It is challenging and interesting to control (004)-oriented growth to decrease resistivity. In this work, NTO films with different fractions of preferential (004) orientation (η(004)) were controllably prepared by direct current sputtering. Notably, the direction of local-ordering of ions-packing could be adjusted by slightly changing the angle between the sputtering source and the glass substrate, which is identified as a key factor to determine the growth direction of a columnar crystal as well as the η(004) of films. Hall effect measurements indicate that NTO films with the highest η(004) present the lowest resistivity (6.4 × 10-4 Ω cm), which originates from super-high carrier concentration (2.9 × 1021 cm-3) and mobility (3.4 cm2 V-1 s-1). The corresponding low sheet resistance (10.3 Ω sq-1) makes it a potential material for commercial TCO films. We also observe that films with higher η(004) show lower transmittance in the near-infrared region.

12.
Chem Commun (Camb) ; 53(46): 6239-6242, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28537618

RESUMEN

Glass frits play an important role in the front contact electrodes of crystalline silicon (c-Si) solar cells. In this work, we developed a novel glass frit by doping Ag into a glass frit in the process of high-temperature synthesis. When the Ag paste including this novel glass frit was used as the front contact electrode of silicon solar cells, the conversion efficiency of poly-crystalline silicon (pc-Si) solar cells was improved by 1.9% compared to the glass frit without Ag. Through SEM characterisation and calculation of series resistance, we further found that the interface between Ag and Si was improved and the contact resistance of Ag and Si was greatly reduced, which were believed to be responsible for the improvement of solar cell performance. This work shows great guidance significance to develop novel and highly efficient commercial glass frits applied in solar cells in the future.

13.
ACS Appl Mater Interfaces ; 8(16): 10367-74, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27045790

RESUMEN

Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.

14.
Nano Lett ; 16(2): 1218-23, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26736028

RESUMEN

Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

15.
ACS Nano ; 8(7): 7078-87, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24923678

RESUMEN

Exploiting noble-metal-free cocatalysts is of huge interest for photocatalytic water splitting using solar energy. Here we report a composite material consisting of CdS nanocrystals grown on the suface of a nanosized MoS2/graphene hybrid as a high-performance noble-metal-free photocatalyst for H2 evolution under visible light irradiation. Through the optimizing of each component proportion, the MoS2/G-CdS composite showed the highest photocatalytic H2 production activity when the content of the MoS2/graphene cocatalyst is 2.0 wt % and the molar ratio of MoS2 to graphene is 1:2. The photocatalytic H2 evolution activity of the proposed MoS2/G-CdS composite was tested and compared in Na2S-Na2SO3 solution and lactic acid solution. A 1.8 mmol/h H2 evolution rate in lactic acid solution corresponding to an AQE of 28.1% at 420 nm is not only higher than the case in Na2S-Na2SO3 solution of 1.2 mmol/h but also much higher than that of Pt/CdS in lactic acid solution. The relative mechanism has been investigated. It is believed that this kind of MoS2/G-CdS composite would have great potential as a promising photocatalyst with high efficiency and low cost for photocatalytic H2 evolution reaction.

16.
Dalton Trans ; 42(8): 2687-90, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23314358

RESUMEN

In(2)S(3)/ZnIn(2)S(4) bulk composite was successfully synthesized through an ion-exchange route using NaInS(2) as a precursor. Compared with the constituent pure component (In(2)S(3) or ZnIn(2)S(4)), the photocatalytic H(2) evolution of the composite was greatly enhanced because of the efficient separation and migration of photoexcited carriers (electrons and holes) at the interface of the bulk composite.

17.
J Nanosci Nanotechnol ; 12(1): 316-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22523981

RESUMEN

In this paper, a facile method is demonstrated to directly fabricate dense titania nanowire arrays on titanium foils under the atmosphere without extra moist conditions. The influences of temperature, time, different catalysts, and concentrations of the respective catalysts on the growth of titania nanowires are discussed in detail. The morphology, composition and crystal structure of the titania nanostructures are revealed by scanning electron microscopy (SEM), powder-X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques, by which a gas-solid reaction mechanism is suggested to explain the growth process of TiO2 nanowires on Ti substrate.


Asunto(s)
Cristalización/métodos , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Titanio/química , Atmósfera , Gases/química , Sustancias Macromoleculares/química , Conformación Molecular , Tamaño de la Partícula , Transición de Fase , Propiedades de Superficie
18.
Sci Technol Adv Mater ; 13(5): 055001, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877522

RESUMEN

A photoassisted approach has been developed to synthesize a zinc indium oxide (Zn5In2O8)/oxysulfide composite through in situ sulfuration of vacancy-rich Zn5In2O8. It was found that vacancies have a considerable impact on the formation of the composite. The composite exhibited an increased photocatalytic H2 evolution activity under visible-light irradiation, which probably resulted from the enhanced ability to separate photoinduced electrons and holes. The H2 evolution rate over the composite was about 17 times higher when using vacancy-rich rather than conventional Zn5In2O8. This study provides a new method of improving the activity of photocatalysts.

19.
J Nanosci Nanotechnol ; 10(5): 3123-30, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20358909

RESUMEN

ZnO nanorod, nanowire and nanotube arrays have been synthesized respectively on Zn substrates using a simple hydrothermal method. The morphology, size, length, density and uniformity of ZnO nanostructures can be well controlled by changing the different reaction conditions. The effects of substrates, temperature, positive and negative ions on the growth of nanostructure have been studied in detail. The results indicate that the addition of MgCl2 facilitates the growth of ZnO nanowires with higher density and formation of well-aligned nanowire arrays. The use of ammonia induces growth of longer nanowires but with lower density. PL spectrum show only strong UV emission at 385 nm, and no green band emission was observed, suggesting the excellent crystal quality of the nanowires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA