RESUMEN
Cyanobacteria are a large group of prokaryotic microalgae that are able to grow photo-autotrophically by utilizing sunlight and by assimilating carbon dioxide to build new biomass. One of the most interesting among many cyanobacteria cell components is the storage biopolymer polyhydroxybutyrate (PHB), a member of the group of polyhydroxyalkanoates (PHA). Cyanobacteria occur in almost all habitats, ranging from freshwater to saltwater, freely drifting or adhered to solid surfaces or growing in the porewater of soil, they appear in meltwater of glaciers as well as in hot springs and can handle even high salinities and nutrient imbalances. The broad range of habitat conditions makes them interesting for biotechnological production in facilities located in such climate zones with the expectation of using the best adapted organisms in low-tech bioreactors instead of using "universal" strains, which require high technical effort to adapt the production conditions to the organism's need. These were the prerequisites for why and how we searched for locally adapted cyanobacteria in different habitats. Our manuscript provides insight to the sites we sampled, how we isolated and enriched, identified (morphology, 16S rDNA), tested (growth, PHB accumulation) and purified (physical and biochemical purification methods) promising PHB-producing cyanobacteria that can be used as robust production strains. Finally, we provide a guideline about how we managed to find potential production strains and prepared others for basic metabolism studies.
RESUMEN
Nuclear Argonaute proteins, guided by small RNAs, mediate sequence-specific heterochromatin formation. The molecular principles that link Argonaute-small RNA complexes to cellular heterochromatin effectors on binding to nascent target RNAs are poorly understood. Here, we explain the mechanism by which the PIWI-interacting RNA (piRNA) pathway connects to the heterochromatin machinery in Drosophila. We find that Panoramix, a corepressor required for piRNA-guided heterochromatin formation, is SUMOylated on chromatin in a Piwi-dependent manner. SUMOylation, together with an amphipathic LxxLL motif in Panoramix's intrinsically disordered repressor domain, are necessary and sufficient to recruit Small ovary (Sov), a multi-zinc-finger protein essential for general heterochromatin formation and viability. Structure-guided mutations that eliminate the Panoramix-Sov interaction or that prevent SUMOylation of Panoramix uncouple Sov from the piRNA pathway, resulting in viable but sterile flies in which Piwi-targeted transposons are derepressed. Thus, Piwi engages the heterochromatin machinery specifically at transposon loci by coupling recruitment of a corepressor to nascent transcripts with its SUMOylation.
Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Genes de Insecto , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Células Madre Oogoniales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Sumoilación/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismoRESUMEN
Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.
Asunto(s)
Drosophila melanogaster , AnimalesRESUMEN
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: ⢠PHA granules present in bacterial cells reveal unique properties and functions. ⢠PHA enhances stress robustness of bacterial cells.
Asunto(s)
Bacterias/metabolismo , Polihidroxialcanoatos/metabolismo , Estrés Fisiológico , Cupriavidus necator/metabolismo , Cianobacterias/metabolismo , Presión OsmóticaRESUMEN
Polyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers. The major focus of the review relies on the synthesis of PHA from Mixed Microbial Cultures (MMCs), through a 3-stage process most probably utilizing feedstocks from waste streams or models that mimic them. Emphasis was given to the works carried out in the past decade and their coherence with each and every individual criteria (Aeration, Substrate and bioprocess parameters) such that to understand their effect in enhancing the overall production of PHA.
Asunto(s)
Polihidroxialcanoatos , Biopolímeros , Reactores Biológicos , PlásticosRESUMEN
PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.
Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN Helicasas DEAD-box/metabolismo , Elementos Transponibles de ADN , Silenciador del Gen , Células Germinativas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética , Proteína Exportina 1RESUMEN
Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5â days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.
Asunto(s)
Cinamatos/química , Colorantes Fluorescentes/química , Imagenología Tridimensional/métodos , Organoides/citología , Ambystoma mexicanum , Animales , Drosophila melanogaster , Humanos , Microscopía Fluorescente , Xenopus laevis , Pez CebraRESUMEN
Cyanobacteria, as photoautotrophic organisms, provide the opportunity to convert CO2 to biomass with light as the sole energy source. Like many other prokaryotes, especially under nutrient deprivation, most cyanobacteria are able to produce polyhydroxyalkanoates (PHAs) as intracellular energy and carbon storage compounds. In contrast to heterotrophic PHA producers, photoautotrophic cyanobacteria do not consume sugars and, therefore, do not depend on agricultural crops, which makes them a green alternative production system. This review summarizes the recent advances in cyanobacterial PHA production. Furthermore, this study reports the working experience with different strains and cultivating conditions in a 200 L pilot plant. The tubular photobioreactor was built at the coal power plant in Dürnrohr, Austria in 2013 for direct utilization of flue gases. The main challenges were the selection of robust production strains, process optimization, and automation, as well as the CO2 availability.
RESUMEN
The current commercial production of polyhydroxyalkanoates (PHA) is based on heterotrophic bacteria, using organic carbon sources from crops. To avoid the competition with food and feed production, cyanobacteria, metabolising PHA from carbon dioxide can be used. This research focuses on the investigation of the thermal and rheological properties of PHA polymers accumulated by Synechocystis salina, which had been cultivated in digestate supernatant and a mineral medium. The dried bacterial cells had a polymer content of 5.5-6.6%. The relevance of the derived PHA polymers for the common melt polymer processing was correlated with their molecular mass distribution as well as with their thermal and rheological properties. The determined thermal and rheological properties showed that PHA polymers accumulated by S. salina on digestate supernatant or mineral medium are comparable with the commercial available poly(3-hydroxybutyrate). However, the results showed that PHA polymers in general require modification before melt processing to increase their stability in the molten state.
Asunto(s)
Medios de Cultivo/metabolismo , Polihidroxialcanoatos/biosíntesis , Synechocystis/metabolismo , Dióxido de Carbono/metabolismo , Medios de Cultivo/química , Peso Molecular , Polihidroxialcanoatos/químicaRESUMEN
A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB.
Asunto(s)
Alquenos/metabolismo , Biocombustibles/microbiología , Biotecnología/métodos , Butiratos/metabolismo , Cianobacterias/metabolismo , Aceites/metabolismo , Poliésteres/metabolismo , Temperatura , Agua/farmacología , Biomasa , Cianobacterias/efectos de los fármacos , Gases/química , Spirulina/efectos de los fármacos , Spirulina/metabolismoRESUMEN
The repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI-piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown. Here, we characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi-mediated transcriptional silencing in Drosophila. Ectopic targeting of Silencio to RNA or DNA is sufficient to elicit silencing independently of Piwi and known piRNA pathway factors. Instead, Silencio requires the H3K9 methyltransferase Eggless/SetDB1 for its silencing ability. In agreement with this, SetDB1, but not Su(var)3-9, is required for Piwi-mediated transcriptional silencing genome-wide. Due to its interaction with the target-engaged Piwi-piRNA complex, we suggest that Silencio acts as linker between the sequence specificity factor Piwi and the cellular heterochromatin machinery.
Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , ADN/metabolismo , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Femenino , Silenciador del Gen , Genoma de los Insectos/genética , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Metilación , Ovario/fisiología , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras/metabolismoRESUMEN
The piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation, and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate that components acting at distinct hierarchical levels of the pathway were identified. Finally, we define CG2183/Gasz as an essential primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways, our results have far-reaching implications for the understanding of this conserved genome defense system.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ovario/fisiología , ARN Interferente Pequeño/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Femenino , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Sensibilidad y EspecificidadRESUMEN
PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) form the core of a gonad-specific small RNA silencing pathway that protects the animal genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology as TUDOR domains of various proteins bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analysed the Drosophila TUDOR protein family and identified four previously not characterized TUDOR domain-containing proteins (CG4771, CG14303, CG11133 and CG31755) as essential piRNA pathway factors. We characterized CG4771 (Vreteno) in detail and demonstrate a critical role for this protein in primary piRNA biogenesis. Vreteno physically and/or genetically interacts with the primary pathway components Piwi, Armitage, Yb and Zucchini. Vreteno also interacts with the Tdrd12 orthologues CG11133 (Brother of Yb) and CG31755 (Sister of Yb), which are essential for the primary piRNA pathway in the germline and probably replace the function of the related but soma-specific factor Yb.