Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210637

RESUMEN

INTRODUCTION: Blood-derived microRNAs (miRNAs) are potential candidates for detecting and preventing subclinical cognitive dysfunction. However, replication of previous findings and identification of novel miRNAs associated with cognitive domains, including their relation to brain structure and the pathways they regulate, are still lacking. METHODS: We examined blood-derived miRNAs and miRNA co-expression clusters in relation to cognitive domains, structural magnetic resonance imaging measures, target gene expression, and genetic variants in 2869 participants of a population-based cohort. RESULTS: Five previously identified and 14 novel miRNAs were associated with cognitive domains. Eleven of these were also associated with cortical thickness and two with hippocampal volume. Multi-omics analysis showed that certain identified miRNAs were genetically influenced and regulated genes in pathways like neurogenesis and synapse assembly. DISCUSSION: We identified miRNAs associated with cognitive domains, brain regions, and neuronal processes affected by aging and neurodegeneration, making them promising candidate blood-based biomarkers or therapeutic targets of subclinical cognitive dysfunction. HIGHLIGHTS: We investigated the association of blood-derived microRNAs with cognitive domains. Five previously identified and 14 novel microRNAs were associated with cognition. Eleven cognition-related microRNAs were also associated with cortical thickness. Identified microRNAs were linked to genes associated with neuronal functions. Results provide putative biomarkers or therapeutic targets of cognitive aging.

2.
medRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39148842

RESUMEN

IMPORTANCE: Olfactory dysfunction is among the earliest signs of many age-related neurodegenerative diseases and has been associated with increased mortality in older adults; however, its genetic basis remains largely unknown. OBJECTIVE: To identify the genetic loci associated with olfactory dysfunction in the general population. DESIGN SETTING AND PARTIICIPANTS: This genome-wide association study meta-analysis (GWMA) included participants of European ancestry (N = 22,730) enrolled in four different large population-based studies, followed by a multi-ancestry GWMA including participants of African ancestry (N = 1,030). The data analysis was performed from March 2023 through June 2024. EXPOSURES: Genome-wide single nucleotide polymorphisms. MAIN OUTCOMES AND MEASURES: Olfactory dysfunction was the outcome and assessed using a 12-item smell identification test. RESULTS: GWMA revealed a novel genome-wide significant locus (tagged by rs11228623 at 11q12) associated with olfactory dysfunction. Gene-based analysis revealed a high enrichment for olfactory receptor genes in this region. Phenome-wide association studies demonstrated associations between genetic variants related to olfactory dysfunction and blood cell counts, kidney function, skeletal muscle mass, cholesterol levels and cardiovascular disease. Using individual-level data, we also confirmed and quantified the strength of these associations on a phenotypic level. Moreover, employing two-sample Mendelian Randomization analyses, we found evidence for causal associations between olfactory dysfunction and these phenotypes. CONCLUSIONS: These findings provide novel insights into the genetic architecture of the sense of smell and highlight its importance for many aspects of human health.

3.
J Transl Med ; 22(1): 670, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030538

RESUMEN

BACKGROUND: As key regulators of gene expression, microRNAs affect many cardiovascular mechanisms and have been associated with several cardiovascular diseases. In this study, we aimed to investigate the relation of whole blood microRNAs with several quantitative measurements of vascular function, and explore their biological role through an integrative microRNA-gene expression analysis. METHODS: Peripheral whole blood microRNA expression was assessed through RNA-Seq in 2606 participants (45.8% men, mean age: 53.93, age range: 30 to 95 years) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Weighted gene co-expression network analysis was used to cluster microRNAs with highly correlated expression levels into 14 modules. Through linear regression models, we investigated the association between each module's expression and quantitative markers of vascular health, including pulse wave velocity, total arterial compliance index, cardiac index, stroke index, systemic vascular resistance index, reactive skin hyperemia and white matter hyperintensity burden. For each module associated with at least one trait, one or more hub-microRNAs driving the association were defined. Hub-microRNAs were further characterized through mapping to putative target genes followed by gene ontology pathway analysis. RESULTS: Four modules, represented by hub-microRNAs miR-320 family, miR-378 family, miR-3605-3p, miR-6747-3p, miR-6786-3p, and miR-330-5p, were associated with total arterial compliance index. Importantly, the miR-320 family module was also associated with white matter hyperintensity burden, an effect partially mediated through arterial compliance. Furthermore, hub-microRNA miR-192-5p was related to cardiac index. Functional analysis corroborated the relevance of the identified microRNAs for vascular function by revealing, among others, enrichment for pathways involved in blood vessel morphogenesis and development, angiogenesis, telomere organization and maintenance, and insulin secretion. CONCLUSIONS: We identified several microRNAs robustly associated with cardiovascular function, especially arterial compliance and cardiac output. Moreover, our results highlight miR-320 as a regulator of cerebrovascular damage, partly through modulation of vascular function. As many of these microRNAs were involved in biological processes related to vasculature development and aging, our results contribute to the understanding of vascular physiology and provide putative targets for cardiovascular disease prevention.


Asunto(s)
MicroARNs , Humanos , Masculino , Persona de Mediana Edad , Femenino , MicroARNs/sangre , MicroARNs/genética , Anciano , Adulto , Anciano de 80 o más Años , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Vasos Sanguíneos/fisiología , Estudios de Cohortes , Ontología de Genes , Perfilación de la Expresión Génica
4.
Aquat Toxicol ; 147: 32-40, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24373890

RESUMEN

Given that polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PH), possess a potent risk for aquatic biota, a great attempt to develop and apply advanced oxidation processes, such as ultrasound (US), is of great concern nowadays. However, because US PAH-derived toxic intermediates are difficult to detect, the present study investigates aqueous PH toxicity before and after high-frequency US degradation, in hemocytes of mussel Mytilus galloprovincialis. Specifically, cell viability (with the use of neutral red uptake/NRU method), and oxidative-stress indices in terms of superoxide anions, (O2(-)), nitric oxides (NO, in terms of nitrites), lipid peroxidation products (in terms of malondialdehyde/MDA content) and DNA damage (with the use of Comet assay method) were investigated in mussel hemocytes exposed to environmentally relevant concentrations of PH (0.01, 0.1, 1 and 10 µg L(-1)), before and after US treatment for 120 min (at a frequency of 582 kHz). According to the results, the NRU method showed a significant attenuation of PH-induced mortality in US PH-treated hemocytes in all cases. Moreover, the increased levels of O2(-) and NO generation, as well as MDA content measured in PH-treated hemocytes, were drastically decreased after US degradation in any case. Similarly, the disturbance of DNA integrity (in terms of % DNA in tail, OM and TM), was negligible in case of US PH-treated hemocytes. Although further in vitro and in vivo studies are needed, the present study showed for the first time that high frequency US could be applied as a highly efficient and "environmentally friendly" process for degrading low molecular weight PAH, such as PH.


Asunto(s)
Mytilus/efectos de los fármacos , Fenantrenos/efectos de la radiación , Fenantrenos/toxicidad , Sonido , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/toxicidad , Animales , Células Cultivadas , Daño del ADN/efectos de los fármacos , Hemocitos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Peroxidación de Lípido/efectos de los fármacos , Rojo Neutro/metabolismo , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA