Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Elife ; 92020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32602462

RESUMEN

The mechanoreceptive sensory hair cells in the inner ear are selectively vulnerable to numerous genetic and environmental insults. In mammals, hair cells lack regenerative capacity, and their death leads to permanent hearing loss and vestibular dysfunction. Their paucity and inaccessibility has limited the search for otoprotective and regenerative strategies. Growing hair cells in vitro would provide a route to overcome this experimental bottleneck. We report a combination of four transcription factors (Six1, Atoh1, Pou4f3, and Gfi1) that can convert mouse embryonic fibroblasts, adult tail-tip fibroblasts and postnatal supporting cells into induced hair cell-like cells (iHCs). iHCs exhibit hair cell-like morphology, transcriptomic and epigenetic profiles, electrophysiological properties, mechanosensory channel expression, and vulnerability to ototoxin in a high-content phenotypic screening system. Thus, direct reprogramming provides a platform to identify causes and treatments for hair cell loss, and may help identify future gene therapy approaches for restoring hearing.


Worldwide, hearing loss is the most common loss of sensation. Most cases of hearing loss are due to the death of specialized hair cells found deep inside the ear. These hair cells convert sounds into nerve impulses which can be understood by the brain. Hair cells naturally degrade as part of aging and can be damaged by other factors including loud noises, and otherwise therapeutic drugs, such as those used in chemotherapy for cancer. In humans and other mammals, once hair cells are lost they cannot be replaced. Hair cells have often been studied using mice, but the small number of hair cells in their ears, and their location deep inside the skull, makes it particularly difficult to study them in this way. Scientists are seeking ways to grow hair cells in the laboratory to make it easier to understand how they work and the factors that contribute to their damage and loss. Different cell types in the body are formed in response to specific combinations of biological signals. Currently, scientists do not have an efficient way to grow hair cells in the laboratory, because the correct signals needed to create them are not known. Menendez et al. have now identified four proteins which, when activated, convert fibroblasts, a common type of cell, into hair cells similar to those in the ear. These proteins are called Six1, Atoh1, Pou4f3 and Gfi1. Menendez et al. termed the resulting cells induced hair cells, or iHCs for short, and analyzed these cells to identify those characteristics that are similar to normal hair cells, as well as their differences. Importantly, the iHCs were found to be damaged by the same chemicals that specifically harm normal hair cells, suggesting they are useful test subjects. The ability to create hair cells in the laboratory using more easily available cells has many uses. These cells can help to understand the normal function of hair cells and how they become damaged. They can also be used to test new drugs to assess their success in preventing or reversing hearing loss. These findings may also lead to genetic solutions to curing hearing loss.


Asunto(s)
Linaje de la Célula , Fibroblastos/fisiología , Células Ciliadas Auditivas Internas/fisiología , Células Laberínticas de Soporte/fisiología , Ratones/fisiología , Animales , Ratones Transgénicos , Cola (estructura animal) , Factores de Transcripción/metabolismo
2.
Nat Med ; 24(3): 313-325, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400714

RESUMEN

An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Degeneración Nerviosa/genética , Proteínas de Unión al GTP rab5/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Endosomas/genética , Demencia Frontotemporal/patología , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Humanos , Intrones/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Degeneración Nerviosa/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA