RESUMEN
Radiotherapy (RT) serves as the primary treatment for solid tumors. Its potential to incite an immune response against tumors both locally and distally profoundly impacts clinical outcomes. However, RT may also promote the accumulation of immunosuppressive cytokines and immunosuppressive cells, greatly impeding the activation of antitumor immune responses and substantially limiting the effectiveness of RT. Therefore, regulating post-RT immunosuppression to steer the immune milieu toward heightened activation potentially enhances RT's therapeutic potential. Cytokines, potent orchestrators of diverse cellular responses, play a pivotal role in regulating this immunosuppressive response. Identifying and promptly neutralizing early released immunosuppressive cytokines are a crucial development in augmenting RT's immunomodulatory effects. To this end, we conducted a screen of immunosuppressive cytokines following RT and identified macrophage colony-stimulating factor (MCSF) as an early up-regulated and persistent immune suppressor. Single-cell sequencing revealed that the main source of up-regulated MCSF derived from tumor cells. Mechanistic exploration revealed that irradiation-dependent phosphorylation of the p65 protein facilitated its binding to the MCSF gene promoter, enhancing transcription. Knockdown and chemical inhibitor experiments conclusively demonstrated that suppressing tumor cell-derived MCSF amplifies RT's immune-activating effects, with optimal results achieved by early MCSF blockade after irradiation. Additionally, we validated that MCSF acted on macrophages, inducing the secretion of a large number of inhibitory cytokines. In summary, we propose a novel approach to enhance the immune activation effects of RT by blocking the MCSF-CSF1R signaling pathway early after irradiation.
RESUMEN
Background: The role of senescent cells in the tumor microenvironment (TME) is usually bilateral, and diverse therapeutic approaches, such as radiotherapy and chemotherapy, can induce cellular senescence. Cellular interactions are widespread in the TME, and tumor cells reprogram immune cells metabolically by producing metabolites. However, how senescent cells remodel the metabolism of TME remains unclear. This study aimed to explore precise targets to enhance senescent cells-induced anti-tumor immunity from a metabolic perspective. Methods: The in vivo senescence model was induced by 8 Gy×3 radiotherapy or cisplatin chemotherapy, and the in vitro model was induced by 10 Gy-irradiation or cisplatin treatment. Metabonomic analysis and ELISA assay on tumor interstitial fluid were performed for metabolites screening. Marker expression and immune cell infiltration in the TME were analyzed by flow cytometry. Cell co-culture system and senescence-conditioned medium were used for crosstalk validation in vitro. RNA sequencing and rescue experiments were conducted for mechanism excavation. Immunofluorescence staining and single-cell transcriptome profiling analysis were performed for clinical validation. Results: We innovatively reveal the metabolic landscape of the senescent TME, characterized with the elevation of adenosine. It is attributed to the senescent tumor cell-induced CD73 upregulation of tumor-associated macrophages (TAMs). CD73 expression in TAMs is evoked by SASP-related pro-inflammatory cytokines, especially IL-6, and regulated by JAK/STAT3 pathway. Consistently, a positive correlation between tumor cells senescence and TAMs CD73 expression is identified in lung cancer clinical specimens and databases. Lastly, blocking CD73 in a senescent background suppresses tumors and activates CD8+ T cell-mediated antitumor immunity. Conclusions: TAMs expressed CD73 contributes significantly to the adenosine accumulation in the senescent TME, suggesting targeting CD73 is a novel synergistic anti-tumor strategy in the aging microenvironment.
Asunto(s)
Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Cisplatino , Macrófagos/metabolismo , Senescencia Celular , Neoplasias Pulmonares/patología , Adenosina/metabolismoRESUMEN
BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS: A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS: In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION: This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Peptidasa Específica de Ubiquitina 7 , beta Carioferinas , Humanos , Apoptosis , Neoplasias Encefálicas/genética , Glioblastoma/genética , Factores de Transcripción , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismoRESUMEN
Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.
Asunto(s)
Cisplatino , Neoplasias Nasofaríngeas , Humanos , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proteínas Nucleares , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Proteínas Represoras , Peptidasa Específica de Ubiquitina 7/genéticaRESUMEN
BACKGROUND: The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS: Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3ß on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS: We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3ß kinase to recognize and degrade IGF2BP2. CONCLUSIONS: Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.
Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Transportador de Aminoácidos Neutros Grandes 1 , Neoplasias Pulmonares , Proteínas de Unión al ARN , Animales , Ratones , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , ARN , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de Unión al ARN/genética , Tolerancia a RadiaciónRESUMEN
Radiotherapy (RT), administered to roughly half of all cancer patients, occupies a crucial role in the landscape of cancer treatment. However, expanding the clinical indications of RT remains challenging. Inspired by the radiation-induced bystander effect (RIBE), we used the mediators of RIBE to mimic RT. Specifically, we discovered that irradiated tumor cell-released microparticles (RT-MPs) mediated the RIBE and had immune activation effects. To further boost the immune activation effect of RT-MPs to achieve cancer remission, even in advanced stages, we engineered RT-MPs with different cytokine and chemokine combinations by modifying their production method. After comparing the therapeutic effect of the engineered RT-MPs in vitro and in vivo, we demonstrated that tIL-15/tCCL19-RT-MPs effectively activated antitumor immune responses, significantly prolonged the survival of mice with malignant pleural effusion (MPE), and even achieved complete cancer remission. When tIL-15/tCCL19-RT-MPs were combined with PD-1 monoclonal antibody (mAb), a cure rate of up to 60% was achieved. This combination therapy relied on the activation of CD8+ T cells and macrophages, resulting in the inhibition of tumor growth and the establishment of immunological memory against tumor cells. Hence, our research may provide an alternative and promising strategy for cancers that are not amenable to conventional RT.
Asunto(s)
Micropartículas Derivadas de Células , Derrame Pleural Maligno , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Terapia Combinada , Citocinas , Microambiente Tumoral , Línea Celular TumoralRESUMEN
Stem-like tumor cells (SLTCs) are thought to be the cellular entity responsible for clinical recurrence and subsequent metastasis. Inhibiting or killing SLTCs can effectively reduce recurrence and metastasis, yet little has been done to clear SLTCs because they are usually resistant to chemotherapy, radiotherapy, and even immunotherapy. In this study, we established SLTCs by low-serum culture and confirmed that the low-serum-cultured tumor cells were in a quiescent state and resistant to chemotherapy, showing features of SLTCs, consistent with the reported data. We demonstrated that SLTCs had high levels of reactive oxygen species (ROS). Based on the finding that radiated tumor cell-derived microparticles (RT-MPs) contained ROS, we used RT-MPs to kill SLTCs. We found that RT-MPs could further increase ROS levels and kill SLTCs in vivo and in vitro partially by ROS carried by the RT-MPs themselves, providing a new method for eliminating SLTCs.
RESUMEN
Malignant ascites in advanced hepatocellular carcinoma (HCC) is a complex clinical problem that lacks effective treatments. Due to the insensitivity of advanced HCC cells to traditional chemotherapies, low drug accumulation, and limited drug residence time in the peritoneal cavity, the therapeutic effects of malignant ascites in HCC are not satisfactory. In this study, an injectable hydrogel drug delivery system based on chitosan hydrochloride and oxidized dextran (CH-OD) is designed to load sulfasalazine (SSZ), an FDA-approved drug with ferroptosis-inducing ability, for effective tumor-killing and activation of anti-tumor immunity. Compared to free SSZ, SSZ-loaded CH-OD (CH-OD-SSZ) hydrogel exhibits greater cytotoxicity and induces higher levels of immunogenic ferroptosis. In the preclinical model of hepatoma ascites, intraperitoneal administration of CH-OD-SSZ hydrogel can significantly suppress tumor progression and improve the immune landscape. Both in vitro and in vivo, CH-OD-SSZ hydrogel induces the repolarization of macrophages to an M1-like phenotype and promotes the maturation and activation of dendritic cells. Combination treatment with CH-OD-SSZ hydrogel and anti-programmed cell death protein 1 (PD-1) immunotherapy achieves more than 50% ascites regression and generates long-term immune memory. Collectively, CH-OD-SSZ hydrogel exhibits promising therapeutic potential in the treatment of peritoneal dissemination and malignant ascites in advanced HCC, especially when combined with anti-PD-1 immunotherapy.
Asunto(s)
Carcinoma Hepatocelular , Quitosano , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/tratamiento farmacológico , Hidrogeles/uso terapéutico , Quitosano/uso terapéutico , Dextranos/uso terapéutico , Ascitis/terapia , Ascitis/tratamiento farmacológico , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/terapia , Sulfasalazina/farmacología , Sulfasalazina/uso terapéutico , InmunoterapiaRESUMEN
PURPOSE: The majority of cancer-related deaths are attributed to metastasis rather than localized primary tumor progression. However, the factors that regulate the premetastatic niche (PMN) and metastasis have not yet been clearly elucidated. We investigated the antimetastatic effects of irradiated tumor cell-derived microparticles (RT-MPs) and highlighted the role of innate immune cells in PMN formation. METHODS AND MATERIALS: Mice were treated 3 times with isolated RT-MPs, followed by tumor cell injection via the tail vein. The hematoxylin and eosin staining was performed to assess the number of tumor nodules in the lungs, and in vivo luciferase-based noninvasive bioluminescence imaging was conducted to detected tumor burden. The mechanisms of RT-MPs mediated PMN formation was evaluated using flow cytometry, transwell assay, and reverse transcription-polymerase chain reaction. RESULTS: RT-MPs inhibited tumor cell colonization in the lungs. Neutrophils phagocytosed RT-MPs and secreted CCL3 and CCL4, which induced monocytes chemotaxis and maturation into macrophages. RT-MPs promoted the transition of neutrophils and macrophages into antitumor phenotypes, hence inhibiting cancer cell colonization and proliferation. CONCLUSIONS: RT-MPs inhibited PMN formation and lung metastasis in a neutrophil- and macrophage-dependent but T cell-independent manner.
Asunto(s)
Micropartículas Derivadas de Células , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Animales , Micropartículas Derivadas de Células/patología , Eosina Amarillenta-(YS) , Hematoxilina , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , Neoplasias Inducidas por Radiación/patología , Microambiente TumoralRESUMEN
Pyroptosis is a programmed cell death mediated by gasdermins (GSDMs). The prognostic value of pyroptosis-related genes in different tumor types has been gradually demonstrated recently. However, the prognostic impact of GSDMs expression in glioma remains unclear. Here, we present a comprehensive bioinformatic analysis of gasdermin family member gene expression, producing a prognostic model for glioma and creating a competing endogenous RNA (ceRNA) network. The mRNA expression profiles and clinical information of glioma patients were downloaded from TCGA and CGGA. A risk score based on the gasdermin family was constructed in the TCGA cohort and validated in CGGA. The Jurkat cell was used to verify the relationship between pyroptosis and activation-induced cell death (AICD). We identify a significant association between the expression of GSDMD and GSDME and the glioma stage. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was used to construct a prognostic gene model based on the four prognostic gasdermin family genes (GSDMC, GSDMD, GSDME, and PJVK). This model was able to predict the overall survival of glioma patients with high accuracy. We show that gasdermin family genes are expressed primarily by immune cells, endothelial cells, and neuronal cells in the tumor microenvironment, rather than by malignant tumor cells. T cells were significantly activated in high-risk patients; however, the activation-induced cell death (AICD) pathway was also significantly activated, suggesting widespread expiration of cytotoxic T lymphocytes (CTLs), facilitating tumor progression. We also identify the lncRNA/miR-296-5p/GSDMD regulatory axis as an important player in glioma progression. We have conducted a comprehensive bioinformatic analysis identifying the importance of gasdermin family members in glioma; a prognostic algorithm containing four genes was constructed.
Asunto(s)
Glioma , MicroARNs , Biomarcadores de Tumor/genética , Biología Computacional , Proteínas de Unión al ADN , Células Endoteliales , Glioma/genética , Humanos , Proteínas Citotóxicas Formadoras de Poros , Piroptosis/genética , Microambiente TumoralRESUMEN
Cancer cell radioresistance is the primary cause of the decreased curability of non-small cell lung cancer (NSCLC) observed in patients receiving definitive radiotherapy (RT). Following RT, a set of microenvironmental stress responses is triggered, including cell senescence. However, cell senescence is often ignored in designing effective strategies to resolve cancer cell radioresistance. Herein, we identify the senescence-like characteristics of cancer-associated fibroblasts (CAFs) after RT and clarify the formidable ability of senescence-like CAFs in promoting NSCLC cell proliferation and radioresistance through the JAK/STAT pathway. Specific induction of senescence-like CAF apoptosis using FOXO4-DRI, a FOXO4-p53-interfering peptide, resulted in remarkable effects on radiosensitizing NSCLC cells in vitro and in vivo. In addition, in this study, we also uncovered an obvious therapeutic effect of FOXO4-DRI on alleviating radiation-induced pulmonary fibrosis (RIPF) by targeting senescence-like fibroblasts in vivo. In conclusion, by targeting senescence, we offer a strategy that simultaneously decreases radioresistance of NSCLC and the incidence of RIPF.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Fibroblastos/metabolismo , Neoplasias Pulmonares/complicaciones , Fibrosis Pulmonar/inducido químicamente , Exposición a la Radiación/efectos adversos , Animales , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Senescencia Celular , Humanos , Neoplasias Pulmonares/radioterapia , RatonesRESUMEN
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
RESUMEN
Background: Tumor associated macrophages (TAMs) have strong plasticity and if reprogrammed, can clear tumor cells and regulate the adaptive immune system for cancer immunotherapy. Deubiquitinating enzymes (DUBs), which can remove ubiquitin (Ub) from Ub-modified substrates, have been associated with oncogenic metabolism but are not well-known for regulating TAMs repolarization. Methods: The expression of DUB related genes in macrophages (MΦs) was detected by reverse transcription-PCR. Flow cytometry and immunofluorescence were used to detect the changes of immune cells in the tumor microenvironment and spleen, including M1 (CD11b+F4/80+CD86+CD206-), and M2 (CD11b+F4/80+CD86-CD206+) MΦs, and IFN-γ+CD8+T cells. A proliferation assay was used to determine the effect of M2 MΦs treated with a USP7 inhibitor on T cell proliferation. Western blotting was used to detect the expression of USP7 and the activation of the MAPK pathway. The TGCA database was used to assess the role of USP7 in the immune microenvironment of human lung adenocarcinoma (LUAD). Results: 51 DUB genes were screened and USP7 was identified as a highly expressed gene in M2 but not M1 MΦs. Specific silencing of USP7 using siRNA or USP7 inhibitors led to phenotypical and functional changes in M2 MΦs, favoring CD8+T cells proliferation in vitro. USP7 inhibitors delayed tumor growth in mice with Lewis lung carcinoma, and promoted tumor infiltration of M1 MΦs and IFN-γ+CD8+T cells. Depletion of TAMs attenuated these therapeutic effects. USP7 inhibition was shown to mediate MΦs reprogramming by activating the p38 MAPK pathway. Administration of USP7 inhibitors increased the expression of programmed cell death ligand 1 (PD-L1) in tumors, while blocking programmed cell death protein 1 (PD-1) provided an effective anti-tumor response. Clinical databases suggest that high expression of USP7 in LUAD was negatively correlated with innate and adaptive immunity. Conclusions: Taken together, these results provide evidence to suggest that therapeutic approaches targeting USP7, in combination with immunotherapy, should be considered for lung cancer treatment.
Asunto(s)
Neoplasias Pulmonares/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Neoplasias Pulmonares/patología , Activación de Linfocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/fisiología , Macrófagos Asociados a Tumores/patologíaRESUMEN
Radiotherapy (RT) is routinely used in cancer treatment, but expansion of its clinical indications remains challenging. The mechanism underlying the radiation-induced bystander effect (RIBE) is not understood and not therapeutically exploited. We suggest that the RIBE is predominantly mediated by irradiated tumor cell-released microparticles (RT-MPs), which induce broad antitumor effects and cause immunogenic death mainly through ferroptosis. Using a mouse model of malignant pleural effusion (MPE), we demonstrated that RT-MPs polarized microenvironmental M2 tumor-associated macrophages (M2-TAMs) to M1-TAMs and modulated antitumor interactions between TAMs and tumor cells. Following internalization of RT-MPs, TAMs displayed increased programmed cell death ligand 1 (PD-L1) expression, enhancing follow-up combined anti-PD-1 therapy that confers an ablative effect against MPE and cisplatin-resistant MPE mouse models. Immunological memory effects were induced.
Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Reprogramación Celular/inmunología , Citotoxicidad Inmunológica , Neoplasias/inmunología , Neoplasias/metabolismo , Radiación Ionizante , Animales , Biomarcadores , Biomarcadores de Tumor , Efecto Espectador/inmunología , Efecto Espectador/efectos de la radiación , Línea Celular Tumoral , Reprogramación Celular/efectos de la radiación , Citotoxicidad Inmunológica/efectos de la radiación , Modelos Animales de Enfermedad , Humanos , Memoria Inmunológica , Quinasas Janus/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neoplasias/patología , Neoplasias/terapia , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Simultaneously targeted treatment of tumor cells and their surrounding growth-supporting immune cells is a promising strategy to reshape immunosuppressive tumor microenvironment (TME) and potentiate host innate and adaptive antitumor immune responses. Methods: We designed a series of melittin-(RADA)n hybrid peptide sequences with varying self-assembling motifs of RADA and screened out a melittin-(RADA)6 peptide that has an optimal gel-formation ability and in vitro antitumor activity. Results: The formed melittin-(RADA)6 (MR52) hydrogel scaffold could be loaded with a specific Ca2+/calmodulin-dependent protein kinase II (CAMKII) inhibitor, KN93, originally found to have both direct tumoricidal activity and macrophages-reprogramming ability, for potent immunotherapy against melanoma and hepatoma ascites in mice models. Our MR52 hydrogel has an interweaving nanofiber-like structure, possesses direct antitumor and controlled drug release properties, and promotes the enhanced intracellular uptake of loaded cargo. Compared to free KN93, the MR52-KN93 hydrogel (MRK) improved the killing effects and levels of immunogenic cell death (ICD) on tumor cells significantly. Due to the dual role of KN93, the injection of the MRK hydrogel retarded the growth of subcutaneous melanoma tumors dramatically and resulted in a high number of mature dendritic cells of draining lymph nodes, significantly enhancing the portion of cytotoxic T cells and reduced number of M2-like tumor-associated macrophages (TAMs) in tumors. Using a mouse model of malignant ascites (MAs), where traditional therapy was ineffective, we demonstrated that the MRK hydrogel treatment offered a significantly prolonged survival compared to controls. Following treatment with the MRK hydrogel, macrophages had elevated programmed cell death protein ligand-1 (PD-L1) expression, promising follow-up combined anti-PD-1 therapy that confers a cure rate of approximately 30% against MAs in mice models. Conclusion: Thus, the MRK hydrogel may serve as a prospective platform for antitumor applications.
Asunto(s)
Antineoplásicos/uso terapéutico , Ascitis/terapia , Bencilaminas/uso terapéutico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Hidrogeles/administración & dosificación , Inmunoterapia/métodos , Neoplasias Hepáticas Experimentales/terapia , Melanoma Experimental/terapia , Meliteno/administración & dosificación , Terapia Molecular Dirigida/métodos , Proteínas de Neoplasias/antagonistas & inhibidores , Oligopéptidos/administración & dosificación , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/uso terapéutico , Macrófagos Asociados a Tumores/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antineoplásicos/administración & dosificación , Ascitis/etiología , Ascitis/inmunología , Antígeno B7-H1/biosíntesis , Bencilaminas/administración & dosificación , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Técnicas de Reprogramación Celular , Composición de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Inyecciones Intraperitoneales , Neoplasias Hepáticas Experimentales/complicaciones , Neoplasias Hepáticas Experimentales/inmunología , Activación de Macrófagos , Masculino , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de Neoplasias/fisiología , Inhibidores de Proteínas Quinasas/administración & dosificación , Distribución Aleatoria , Proteínas Recombinantes de Fusión/administración & dosificación , Sulfonamidas/administración & dosificación , Escape del Tumor/efectos de los fármacos , Macrófagos Asociados a Tumores/clasificación , Macrófagos Asociados a Tumores/enzimologíaRESUMEN
Existing evidence has shown that circulating Epstein-Barr virus (EBV)-miR-BART13-3p is highly expressed in plasma of nasopharyngeal carcinoma (NPC) patients, especially among patients with advanced diseases. However, the exact role that EBV-miR-BART13-3p plays in the development of NPC remains poorly understood. Here we show that up-regulated expression of EBV-miR-BART13-3p leads to increased capacity in migration and invasion of NPC cells in vitro and causes tumor metastasis in vivo. Furthermore, we find that EBV-miR-BART13-3p directly targets ABI2, known as a tumor suppressor and a cell migration inhibitor, drives epithelial-mesenchymal transition (EMT) by activating c-JUN/SLUG signaling pathway. Silencing ABI2 shows similar effects to overexpression of EBV-miR-BART13-3p, whereas reconstitution of ABI2 resulted in a phenotypic reversion, highlighting the role of ABI2 in EBV-miR-BART13-3p-driven metastasis in NPC. Besides, expression levels of ABI2 in NPC tissue samples correlate with N stages of NPC patients. Taken together, these results suggest a novel mechanism by which ABI2 downregulation by EBV-miR-BART13-3p promotes EMT and metastasis of NPC via upregulating c-JUN/SLUG signaling pathway.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/etiología , Carcinoma Nasofaríngeo/metabolismo , ARN Viral , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transición Epitelial-Mesenquimal/genética , Infecciones por Virus de Epstein-Barr/virología , Técnicas de Silenciamiento del Gen , Humanos , Modelos Biológicos , Carcinoma Nasofaríngeo/patología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción de la Familia Snail/metabolismoRESUMEN
Objective: To investigate the diagnosis and treatment of synchronous lymphoma and digestive system carcinoma and review literature. Materials and Methods: We retrospectively analyzed the clinical data of four cases of synchronous lymphoma and digestive system carcinoma treated at our hospital. The clinical manifestations, pathological results, and treatment strategies were investigated. Results: One of the four cases was diagnosed as follicular lymphoma with gastric adenocarcinoma, and the other three were diagnosed as diffuse large B-cell lymphoma with digestive system adenocarcinoma in the liver, sigmoid colon, and duodenum papilla, respectively. The second carcinoma was initially discovered incidentally because of the stage examination of lymphoma or the patient's poor response to treatment. The diagnosis of synchronous lymphoma and digestive system carcinoma depended mainly on the pathological examination. Conclusions: The accurate diagnosis of synchronous malignancies is challenging because they rarely occur. We suggest a scrupulous re-biopsy of extranodal lesions in patients with lymphoma to improve the diagnostic accuracy of related double primary tumors. Age, performance status, symptoms, pathological types, and tumor staging should be considered when formulating a treatment strategy. The systemic treatment regimens should include drugs targeting the synchronous tumors in question, and these remain to be explored further.
RESUMEN
Distribution of different malignant lymphoma subtypes varies substantially in different geographic regions, even in different districts in China.In order to estimate the epidemiologic characteristics of malignant lymphoma in Hubei, China, we retrospectively analyzed a total number of 2027 newly diagnosed cases from April 2009 to April 2014 in a single institution according to the 2008 WHO classification.The median diagnosis age of all these lymphoma patients was 53 (1-99) years, and the median ages for non-(NHL) and Hodgkin lymphoma (HL) were 54 (1-99) years and 38 (5-84) years, respectively. Among the included patients, mature B-cell neoplasms occupied 61.3%, mature T- and NK-cell neoplasms accounted for 21.0%, precursor lymphoid cell neoplasms made up 4.5%, and HL constituted 8.0%. The most common subtype of NHL was diffuse large B cell lymphoma (41.3%), followed by NK/T cell lymphoma (13.4%), extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) (8.0%), follicular lymphoma (6.6%), lymphoblastic lymphoma (4.9%), and mantle cell lymphoma (4.0%). Mixed cellularity lymphoma ranked first among classical HL subtypes, and there is a bimodal median age distribution revealed by our study, which is different from results reported by other regions of China. Most subtypes revealed male predominance while MALT lymphoma showed a slight female predominance. Extranodal lymphomas most frequently involved gastrointestinal tract, sinonasal region, and Waldeyer ring.In summary, the distribution of lymphoma subtypes in Hubei of China is similar to that of Asian populations, as well as other regions of China, but distinct from the Western countries.
Asunto(s)
Linfoma/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , China/epidemiología , Femenino , Humanos , Lactante , Linfoma/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto JovenRESUMEN
There is a significant difference in prognosis between the germinal center B-cell (GCB) and activated B-cell (ABC) subtypes of diffuse large B-cell lymphoma (DLBCL). However, the signaling pathways and driver genes involved in these disparate subtypes are ambiguous. This study integrated three cohort profile datasets, including 250 GCB samples and 250 ABC samples, to elucidate potential candidate hub genes and key pathways involved in these two subtypes. Differentially expressed genes (DEGs) were identified. After Gene Ontology functional enrichment analysis of the DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software. Subsequently, the Oncomine database and the cBioportal online tool were employed to verify the alterations and differential expression of the 8 hub genes (MME, CD44, IRF4, STAT3, IL2RA, ETV6, CCND2, and CFLAR). Gene set enrichment analysis was also employed to identify the intersection of the key pathways (JAK-STAT, FOXO, and NF-κB pathways) validated in the above analyses. These hub genes and key pathways could improve our understanding of the process of tumorigenesis and the underlying molecular events and may be therapeutic targets for the precise treatment of these two subtypes with different prognoses.
Asunto(s)
Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Linfoma de Células B Grandes Difuso/genética , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis por MicromatricesRESUMEN
Nischarin, a novel integrin binding protein, has been demonstrated its negative effects on cell migration and invasion. However, the biological role of Nischarin in breast cancer has not been fully elucidated yet. Our study aimed to analyze the association between Nischarin expression and clinical features of breast cancer patients, and further investigate the role of Nischarin in breast cancer cells apoptosis, migration and invasion. Results showed that Nischarin expression was significantly lower in breast cancer tissues (37.8%, 23/67) than in normal tissues (61.8%, 21/34; P < 0.05), and the expression of Nischarin significantly negatively correlated with estrogen receptor status. Similarly, Nischarin expression was highest in normal breast cell line HBL-100 while triple-negative breast cancer cell line MDA-MB-231 had the lowest expression of Nischarin. Further experiments demonstrated that overexpression of Nischarin may induce apoptosis, and inhibit cell migration and invasion. The present data confirmed that Nishcharin might be a novel tumor suppressor and plays an important role in breast cancer cell apoptosis and metastasis, which can be used as a potential therapeutic target for breast cancer treatment.