Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Nutr ; 11: 1402316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919394

RESUMEN

Background: Kawasaki Disease (KD) is a pediatric vasculitic disorder characterized by systemic small vasculitis, notably coronary arteritis, with unclear pathogenesis. This explorative case-control study investigated the association between folic acid (FA), vitamin D3 (VD3), and vitamin B12 (VB12) levels and the different types of Kawasaki Disease, as well as the incidence of coronary artery lesions (CALs). Methods: In this explorative case control study, 365 KD children admitted to our hospital from January 1, 2022 to June 30, 2023 were included as the KD group. Simultaneously, 365 healthy children who received physical examination during the same period were included as the control group. The KD group was divided into typical KD group and incomplete KD group (IKD group), CALs group and non-CALS group, and IVIG sensitive group and IVIG resistant group. The children with CALs were divided into small tumor group, medium tumor group and large tumor group. Serum levels of FA, VB12, and VD3 were compared across all groups. Results: Serum levels of FA and VD3 were significantly decreased in both the KD and CALs groups (p < 0.05), and both factors were identified as independent risk factors for KD and CALs. Similarly, reduced serum VD3 levels were observed in the IKD and IVIG-resistant groups (p < 0.05), with VD3 also being an independent risk factor for both IKD and IVIG resistance. Additionally, lower serum FA levels were noted in the group with large aneurysms (p < 0.05), establishing FA as an independent risk factor for aneurysm size. Conclusion: Serum levels of folic FA and vitamin VD3 were significantly reduced in children with KD. Furthermore, these reductions were more pronounced in children with IKD and CALs. This pattern suggests that lower FA and VD3 levels may increase the risk of more severe coronary lesions in KD patients. Therefore, monitoring these biomarkers could provide valuable insights for early clinical diagnosis and intervention.

2.
Signal Transduct Target Ther ; 9(1): 73, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528050

RESUMEN

Patients with advanced gastric cancer typically face a grim prognosis. This phase 1a (dose escalation) and phase 1b (dose expansion) study investigated safety and efficacy of first-line camrelizumab plus apatinib and chemotherapy for advanced gastric or gastroesophageal junction adenocarcinoma. The primary endpoints included maximum tolerated dose (MTD) in phase 1a and objective response rate (ORR) across phase 1a and 1b. Phase 1a tested three dose regimens of camrelizumab, apatinib, oxaliplatin, and S-1. Dose regimen 1: camrelizumab 200 mg on day 1, apatinib 250 mg every other day, oxaliplatin 100 mg/m² on day 1, and S-1 40 mg twice a day on days 1-14. Dose regimen 2: same as dose regimen 1, but oxaliplatin 130 mg/m². Dose regimen 3: same as dose regimen 2, but apatinib 250 mg daily. Thirty-four patients were included (9 in phase 1a, 25 in phase 1b). No dose-limiting toxicities occurred so no MTD was identified. Dose 3 was set for the recommended phase 2 doses and administered in phase 1b. The confirmed ORR was 76.5% (95% CI 58.8-89.3). The median progression-free survival was 8.4 months (95% CI 5.9-not evaluable [NE]), and the median overall survival (OS) was not mature (11.6-NE). Ten patients underwent surgery after treatment and the multidisciplinary team evaluation. Among 24 patients without surgery, the median OS was 19.6 months (7.8-NE). Eighteen patients (52.9%) developed grade ≥ 3 treatment-emergent adverse events. Camrelizumab plus apatinib and chemotherapy showed favorable clinical outcomes and manageable safety for untreated advanced gastric cancer (ChiCTR2000034109).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Piridinas , Neoplasias Gástricas , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Oxaliplatino , Piridinas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Quimioterapia Combinada/métodos
3.
Mol Immunol ; 166: 79-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271879

RESUMEN

BACKGROUND: Liver ischemia reperfusion (IR) injury is a common cause of liver dysfunction in patients post liver partial resection and liver transplantation. However, the cellular defense mechanisms underlying IR are not well understood. Macrophage mediated sterile inflammation plays critical roles in liver IR injury. Sorting nexin (SNX) 10, a member of the SNX family which functions in regulation of endosomal sorting. This study aimed to explore the role of sorting nexin 10 (SNX10) during liver IR injury with a focus on regulating macrophage function. METHODS: Both the gene and protein expression levels of SNX10 were analyzed in human specimens from 10 patients undergoing liver partial resection with ischemic insult and in a mouse model of liver IR. The in vivo effects of SNX10 in liver IR injury and sterile inflammation in mice were investigated. Bone marrow derived macrophages (BMDMs) were used to determine the role of SNX10 in modulating macrophage function in vitro. RESULTS: Increased expression of SNX10 was observed both in human specimens and mice livers post IR. SNX10 knockdown alleviated IR induced sterile inflammation and liver damage in mice. SNX10 promoted M1 polarization of macrophage treated with LPS and facilitated inflammatory response by activating NLRP3 inflammasome. CONCLUSIONS: We report for the first time that SNX10 is upregulated in IR-stressed livers. SNX10 activation aggravates liver IR injury and sterile inflammation by facilitating macrophage M1 polarization and inflammatory response suggesting SNX10 as a potential therapeutic target for liver IR injury.


Asunto(s)
Inflamasomas , Daño por Reperfusión , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/metabolismo
4.
Carbohydr Polym ; 329: 121797, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286561

RESUMEN

The abundance of Fusobacterium nucleatum (F. nucleatum) is highly associated with the development and poor prognosis of colorectal cancer (CRC), which is regarded as a promising target for CRC. However, until now, the novel strategy to clear F. nucleatum in the colon and CRC has not been well proposed. Herein, a probiotic strain Enterococcus faecium (E. faecium, EF47) is verified to secrete various organic acids and bacteriocins to exert superior antimicrobial activity towards F. nucleatum. However, the oral delivery of EF47 is affected by the complex digestive tract environment, so we design the hyaluronic acid-inulin (HA-IN) coated EF47 for colon-targeted delivery to fight F. nucleatum. IN can protect EF47 from the harsh gastrointestinal tract environment and is degraded specifically in the colon, acting as prebiotics to further promote the proliferation of EF47. The exposed HA can also enhance the targeting effect to the tumor area via the interaction with the CD44 receptor on the tumor cells, which is confirmed to increase the adhesive ability in tumor tissues and inhibit the growth of F. nucleatum. Therefore, this colon-targeted delivery system provides a novel platform to realize high-activity and adhesive delivery of probiotics to assist the therapeutic efficiency of CRC.


Asunto(s)
Neoplasias Colorrectales , Enterococcus faecium , Infecciones por Fusobacterium , Humanos , Fusobacterium nucleatum , Neoplasias Colorrectales/patología , Ácido Hialurónico/farmacología , Inulina , Infecciones por Fusobacterium/complicaciones , Infecciones por Fusobacterium/microbiología
5.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134636

RESUMEN

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos B
6.
Crit Rev Biotechnol ; : 1-18, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105513

RESUMEN

Fungal α/ß-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/ß-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/ß-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA